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ABSTRACT 
 

In this work, the radiative corrections to the production of a light neutral Higgs boson (h�)	with a pair of lightest neutralinos (χ��
�)		in e�e� 

collisions within MSSM are presented through two different SUSY scenarios –Higgsino and Gaugino scenarios-, including the on-shell 
renormalization scheme in the loop calculations. We have studied the QED corrections as well as the weak corrections, where the contribution 
from both corrections is significant and needs to be taken into account in the future linear colliders experiments. The result includes the 
numerical calculations for	e�e� → χ��

�	χ��
�h�. 
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INTRODUCTION 
 

On July 2012, both CMS and ATLAS collaborations at the 
LHC, announced independently, that they both discovered a 
previously unknown boson of mass between 125 and 127 GeV 
(Cho, 2012; The ATLAS Collaboration, 2012), and it is 
confirmed by experiments to be the Higgs boson, on March 
2013. Since the discovery of the Higgs boson, the 
experimentalists as well as theorists expected to discover the 
rest of the Minimal Super symmetric Standard Model (MSSM) 
particles and support the validity of Super symmetry (SUSY) 
theory. SUSY is a type of space-time symmetry between 
bosons and fermions. In realistic models, SUSY is broken at 
the weak scale implying that all Standard Model (SM) particles 
must have super partners with masses in the range ~  100−1000 
GeV and up to 2 TeV that will be accessible to colliders 
(Bagnaschi et al., 2017). The discovery of Higgs boson has 
impact on the search for particles such as neutralino (Beskidt et 
al., 2014), where the couplings of the Higgs bosons to the 

SUSY scalar fermions ��	and to the charginos ��± 	and 
neutralinos ��� depend on the soft–SUSY breaking parameters 
and therefore carry information on the fundamental SUSY 
theory. Searches for direct detection of dark matter have 
focused primarily on the weakly interacting massive particles 
(WIMPs) and more precisely on the lightest super symmetric 
particles (LSPs). These are hypothetical particles such as 
neutralinos that are least massive members of the hypothesized 
family of supersymmetric partner particles. In addition to 
consider the neutralinos as one of the best candidates for the 
dark matter, the studying of neutralinos masses presents lots of 
information on the SUSY-breaking structure. In MSSM 
(Nilles, 1984), one has four neutralinos ���

�-���
�, which are the 

fermion mass eigenstates of the supersymmetric partners of the  
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photon, the �� boson, and the neutral Higgs bosons	��,�
� . Their 

mass matrix depends on the parameters	��, ��, �, and tan�, 
where ��and ��	are the SU(2) and U(1) gauge mass 
parameter, tan� = �� ��⁄ with ��,�	the vacuum expectation 
values of the two neutral Higgs doublet fields. If 
supersymmetry is realized in nature, neutralinos should be 
found in the present high energy experiments at Tevatron, 
LHC (The ATLAS Collaboration, 2014) and future 
����	colliders. Especially at a linear ���� collider, it will be 
possible to perform measurements with high precision 
(TESLA Technical Design Report, 2001-011; Adolphsen et al.,  
2000). To obtain high matching between experiments results 
and theoretical prediction, it is inevitable to include higher-
order terms in the calculation of the measured quantities, since 
the previous studies have showed that the Born-level 
evaluations can be affected significantly by one-loop radiative 
corrections.  
 

In this paper, we use on-shell renormalization scheme in the 
loop calculations of the Higgs and neutralino sectors of the CP-
conserving MSSM. The calculation was performed using the 
FeynArts and FormCalc computer packages. All the 
renormalization constants, required to determine the various 
counterterms for the Higgs, neutralino and other sectors, being 
implemented in the MSSM version of Feyn Arts (Hahn and 
Schappacher, 2002) for completion at the one-loop level. The 

resulting amplitudes were algebraically simplified using Form 
Calc and then converted to a FORTRAN program. The Loop 
Tools package was used to evaluate the one-loop scalar and 
tensor integrals (Hahn, 2000).  
 

Radiative Corrections 
 

The neutralino pair production in association with MSSM 
neutral Higgs boson can be presented as following:  
 

��(��) + ��(��) → ���
�(��) + ���

�(��) + ℎ�(��), 
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where the momenta of the particles are given in brackets and 
  

 
 

Figure 1. The lowest order (LO) Feynman diagrams for 

the		���� → ���
�	���

��� 
 
obey the on-shell conditions		��

� = ��
� = 0,		��

� = ��
� =

�
���
�

� ,		��
� = ��

� . The center-of-mass energy squared � =

(�� + 	��)
�.  

 
Feynman diagrams in Fig. 1 represent the 6 most contributing 
topologies involved in this process at tree level: 
 

 3 with the s-channel ��	exchange,  
 3 with the t-channel left– and right–handed selectron 

�̃�,�	exchange.  
 
The diagrams where the ℎ� boson is emitted from the electron 
and positron lines give negligible contributions.  
 
From the interaction Lagrangian corresponding to Fig. 1 
(Gunion and Haber, 1986; Haber and Kane, 1985): 
 

				ℒ���̅� = −
�

cos ��
��
��̅	��[���� + ����]�, 

 

ℒ�����
����

� =
�

2cos ��
��
���̅�

�������
′′��� + ���

′′�������
�, 

 
				ℒ��̃���

� = ���
��̅�����

��̃� + ���
��̅�����

��̃� + ℎ. �., 

 

ℒ�����
����

� = −
�

2
ℎ� cos � ��̅�

�����
′′∗�� + ���

′′ ������
�

+
�

2
ℎ� sin� ��̅�

�����
′′∗�� + ���

′′ ������
�, 

 

				ℒ���� =
���

2 cos ��
���

�ℎ� cos(� − �), 

 

					ℒ���̃�̃ =
���

cos ��
ℎ�[(��� − ��̃	�in

���)�̃�
∗�̃�

+ ��̃	�in
����̃�

∗ �̃�], 
 
one obtains the following couplings: 
 

	��,� = ���,� + 	�in���,							��� = −
1

2
,							��� = 0 

		���
′′� = −���

′′�∗ = −
1

2
������

∗ +
1

2
������

∗ , 

				��
� = −

√2

2
(tan����� + ���),								��

� = √2tan�����
∗ , 

	����
′′ =

1

2
��������� − �′���� + √2	ℎ∗������ + (� ↔ �)�, 

 

	����
′′ =

1

2
��������� − �′���� − √2	ℎ∗������ + (� ↔ �)�, 

				���
�� =

1

2��

��∗������ + ��∗������ − �∗������� + ��������, 

 
For high precise results, radiative corrections should be 
included in the calculations which involve virtual one-loop 
correction and real photon emission such that:  
 
� = ����� + �����																																																																											(2) 
 

	= � �|ℳ����(�
��� → ���

����
�ℎ�)|��Φ�

����

		

+ � �|ℳ����(�
��� → ���

����
�ℎ��)|��Φ�

����

 

 
Virtual Corrections                                          

 
The set of Feynman diagrams in Fig. 1, has to be dressed by 
the corresponding loop contributions containing the full 
particle spectrum of the MSSM. One-loop Feynman diagrams 
can be classified as the following generic structure: The virtual 
vertex corrections Fig. 2, the box graph contributions to the 
propagators Fig. 3, and the self-energy contributions Fig. 4. 
The complete supersymmetric spectrum is used for the virtual 
particles inside loops. The evaluation of one-loop diagrams 
usually leads to two types of divergences:     
 

 UV divergences, which are associated with singularities 
occurring at large loop momenta, 

 IR divergences, which are generated, if one of the 
propagators in the loop vanishes. 

 
To isolate the UV divergences, the regularization by 
dimensional reduction scheme (DR) is used to preserve SUSY. 
In this scheme only the momenta are treated as D-dimensional, 
while the fields and the Dirac algebra are kept 4-dimensional. 
To get rid of the UV divergences and absorb them, they should 
be renormalized by introducing a suitable set of counterterms 
for the renormalization of the coupling constants and the 
renormalization of the external wave functions. In this paper 
on-shell renormalization scheme is used in which all particle 
masses are defined as pole masses, such that the cross sections 
are directly related to the physical masses of the external 
particles and the other particles entering the loops (Choi et al., 
2000; Fritzsche and Hollik, 2002). The complete cross section 
at the one-loop level can be written as follows: 
 
������� = �� + �����                                                             (3) 
 
The virtual electroweak radiative correction to the cross 
section is given by 
 
����� = ��∆���� 

=
(2�)�

2|�⃗�|√�
��Φ� � ���ℳ�

�ℳ�����,					

����

																																				(4) 

 
where ∆���� is the relative virtual correction and  ℳ���� is the 
renormalized amplitude involving all the one-loop electroweak 
Feynman diagrams and corresponding counterterms. The 
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contributions of virtual photon exchange in loops leads to soft 
IR divergences as well as the real photon emission (Fritzsche 
and Hollik, 2004), but their sum is IR finite.  
 

 
 

Figure 2. Vertex Corrections 
 

 
 

Figure 3. Box Corrections 
 

 
 

Figure 4. Self Corrections 
 
 
From previous discussion the corrected cross section can be 
expressed as following: 
 
�����(���� → ���

����
�ℎ�) 

 
					= 	 ����(���� → ���

����
�ℎ�) + �(���� → ���

����
�ℎ��)   

                                          
Renormalization of Neutralino Sector 
 
The tree level neutralino mass terms are given by: 
 

ℒ� = −�

�
���⊺�	�� + ���

⊺
������ + ℎ. �., 

 
Where 
 

�� = ����,�� �,ℎ��
�,ℎ��

��
�
 

 
Lagrangian involves the � parameter, the soft-breaking 
gaugino-mass parameters ��	and	��, and the Higgs vacua ��, 
which are related to tan� = �� ��⁄ and to the �	mass �� =
��/2 with (��

� + ��
�)�/�	(Fritzsche and Hollik, 2002; 

Dabelstein, 1995). After the electroweak symmetry is broken, 
the neutralino mass matrix in the bino–wino–higgsino basis 
can be written as:  
 
� =  

�

�� 0 −��	�� cos � ��	�� sin�

0 �� 	��	�� cos � –��	�� sin�

−��	�� cos �
��	��	���	�

��	�� cos �
−��	��	���	�				

		0																	 −�
−�																		 		0

�, 

 

which can be diagonalized with the help of a unitary 4 ×
4	matrix N, yielding the neutralino mass eigenstates ���

�(� =
1,⋯,4). 
 
Renormalization constants are introduced for the neutralino 
mass matrix Y and for the neutralino fields ��	by the 
transformation: 
 
� → � + ��, 

�� → �1 +
�

�
������ �

�,																																																																	(5) 

         
where the matrix-valued renormalization constant �����  is a 

general complex 4	×	4 matrix of one-loop order. The physical 
(on-shell) masses are defined as poles of the real parts of the 
one-loop corrected propagators. The physical neutralino 
masses are then given by, 
 
			�

���
�

�� = ����
� + (�∗�����)�� − �����

�,																																					(6) 

 
where ����

� is the finite tree level mass, and �����
� is the loop 

correction to the neutralino mass. The pole mass �
���
�

��  is 

considered as an input by specification of the parameters	�, 
��, ��, which are related to the input masses in the same way 
as in LO. In this way, the tree-level masses ����

�	as well as the 

counterterm matrix		��, are fixed.  
 
The matrix �� consists of the counterterms for the following 
parameters in the mass matrix	�:	��,	��,  �,	tan�, the �	boson 
mass ��, W boson mass, which is involved in ��, and the 
electroweak mixing angle		�� = sin ��, �� = cos ��, such 
that:  
 

�� =

⎝

⎜
⎛

��� 0 ���� ����
0 ��� ���� ����

−����
����

����
			−����				

0 −��

−��	 0 ⎠

⎟
⎞

.                                 (7) 

 
���

� , ���
� and ��� are the same as in SM. We renormalize 

them according to the on–shell prescription of electroweak 
renormalization, where �� and �� are physical (pole) masses, 
and	cos �� = ��	 ��⁄ . This gives (Farzinnia and He, 2013): 
 

���
� = ℜ��∑��(��

� ); 
 

���
� = ℜ��∑��(��

�); 
 

	� cos �� =
��

��

�
���

��

−
���

��

�.																																															(8) 

 
∑�� and ∑�� are the transverse components of the diagonal W 
and Z two–point functions in momentum space, respectively. 
Those three counter terms have, besides the contributions from 
the SM, new contributions from the MSSM involving loops of 
super particles and additional Higgs bosons. �tan� is fixed in 
Higgs sector as following: 
 

	�tan� =
1

2��	cos
��	

ℑ�(∑��(��

2
)),																																(9)	 

 
this implies that the two-point function connecting the CP-odd 
Higgs boson A to Z boson vanishes when A is on-shell. 
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���, ��� and �� are fixed in neutralinos sector. By using the 
three neutralino masses as inputs, the counterterms	���, ��� 
and �� are all determined from Eq. (6). 
 
Renormalization of Higgs Sector       
                                  
The MSSM requires two Higgs doublets �� and �� with 
opposite hypercharge �� = −�� = −1. The quadratic part of 
the Higgs potential in the MSSM is given by:  
 
� = ��

������ + ��
������ + ���

� (�����
���

� + ℎ. �. ) 
 

								+
1

8
(��

� + ��
�)(����� − �����)

� −
��
�

2
|�����|

�,													(10) 

 
where 	���

�   is defined to be negative and ��� = −��� = −1, 
with soft breaking parameters ��

�, ��
�, ���

�  and ��, �� are, 
respectively, SU(2) and U(1) gauge couplings. Decomposing 
each Higgs doublet field ��,� in terms of its components 
(Fritzsche and Hollik, 2004; Dabelstein, 1995), we get 
 

�� = �
��

�

��
�� = �

(�� + ��
� − ���

�)/√2
−��

� �	, 

�� = �
��

�

��
�� = �

��
�

(�� + ��
� + ���

�)/√2
�,																																		(11) 

 
with vacuum expectation values ��, ��. 
 
The Higgs potential (10) is diagonalized by the rotations 
 

�
��

	ℎ� � = �
cos � sin�
− sin� cos �

� �
��

�

��
�� 

�
��

	�� � = �
cos � sin�
− sin� cos �

� �
��
�

��
�� 

	�
��

	��� = �
cos � sin�
− sin� cos �

� �
��

�

��
��.																																										(12) 

 
��,	�±  describe the unphysical Goldstone modes. The 
spectrum of physical states consists of: a light neutral CP-even 
state (	ℎ�), a heavy neutral CP-even state ( ��), a neutral CP-
odd state (	��), and a pair of charged states (	�± ). The masses 
of the gauge bosons and the electromagnetic charge are 
determined by: 
 

��
� =

1

4
(��

� + ��
�)(��

� + ��
�)	,	 

	��
� =

1

4
��
�(��

� + ��
�)	,	 

	�� =
��
���

�

��
� + ��

� 	.																																																																													(13) 

 
Thus, the potential (10) contains two independent free 
parameters, which can conveniently be chosen as 
 

						tan� =
��
��

	,					��
� = −���

� (tan� + cot�),																			(14) 

 
where �� is the mass of the �� boson. 
 
Expressed in terms of Eq. (14), the masses of the other 
physical states are written as: 
 

	���,��
� =

1

2
(��

� + ��
� ± �(��

� + ��
�)� − 4��

���
�cos�2�) 

    	���
� = ��

� + ��
� ,                                                           (15) 

 
and the mixing angle � in the (��,	ℎ�)-system is derived from 
 

			tan2� = tan2�
��

� + ��
�

��
� −��

� 	,−
�

2
< � ≤ 0	.																								(16) 

 
Hence, masses and couplings are determined by only a single 
parameter more than in the standard model. 
 
The dependence on �� is symmetric under		tan� ↔ 1 tan�⁄ , 
and ���		is constrained by: 
 
	���		 < �� cos 2� < �� .																																																								(17) 
 
This simple scenario, however, is changed when radiative 
corrections are taken into account. 
 
The tree-level mass matrix ��	of the neutral scalar system that 
represents bare mass system is diagonalized by Eqs (12). Loop 
contributions to the quadratic part of the potential (neglecting 
the ��-dependence of the diagrams) modify the mass matrix as 
 
	�� → �� + �� = �.																																																																	(18) 
 
Re-diagonalizing the one-loop matrix �	yields the corrected 
mass eigenvalues		���,�� , replacing (15), and an effective 

mixing angle ���� instead of (16). The renormalization 

constants (Dabelstein, 1995) are defined as follows: 
 
�� → (��

�)�/��� ,         ��
� → (��

�)�/���
� , 

�� → ���

�/�
��  , 

��
� → ���

�
�
�/�

��
�  ,         ���

� → ���
��
�
�/�

���
�  , 

�� → ��
�(��

�)��/���,    �� → ��
�(��

�)��/��� , 

�� → ���

�/�(�� − ���) , 

	��
� → ���

��(��
� + ���

�), 

���
� → ���

��/�
���

��/�(���
� + ����

� ).																																											(19) 

 
The complete definitions and the explicit expressions of the 
renormalization constants of the other sectors: sfermion sector, 
MSSM parameters and fields including those of SM as the 
electric charge and the masses of	�,	�, and the fermions and 
their counterterms in addition to tan all these are treated as 
described in (Fritzsche and Hollik, 2004; Hollik and Rzehak, 
2003; Denner, 1993), to deliver all counterterms required for 
propagators and vertices appearing in the amplitudes.  
 
Real Photonic Corrections     
                                     
The soft (IR) divergences in the ℳ������� originate from the 
contributions of virtual photon exchange in loops (Hooft and 
Veltman, 2007). Due to the selectron exchange channels, one 
cannot separate off all Feynman diagrams with an additional 
photon attached to the tree-level diagrams to define pure 
“weak and QED corrections”. These soft (IR) divergencies can 
be cancelled by the real photon bremsstrahlung corrections in 
the soft photon limit in which the cross section for real photon 
emission (Giele and Glover, 1992) is proportional to the Born 
cross section, 
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		�
��

�Ω
�
����

= �
��

�Ω
�
����

∆����																																																		(20) 

 
where ∆���� is the QED correction factor from real 

bremsstrahlung in the soft-photon approximation. The real 
photonic corrections are induced by the process: 
 

��(��) + ��(��) → ���
�(��) + ���

�(��) + ℎ�(��) + �����, 

 
where		��	denotes the photon momentum.  

 
A real photon radiates from the electron/positron	�± , and can 
have either soft or collinear nature. The collinear singularity is 
regularized by keeping electron (positron) mass. The general 
phase-space-slicing method (PSS) is adopted to separate the 
soft photon emission singularity from the real photon emission 
processes. By using this method, the bremsstrahlung phase 
space is divided into singular and non-singular regions by the 
soft photon cut off, Δ�, and the cross section of the real photon 
emission  process is decomposed into soft and hard terms (Al-
Negashi et al., 2013) as: 
 

����� = �����(��) + �����(��) 

 
											= ���∆���� + ∆�����																																																								(21) 

 
where �����	 = �����	and ����	 = �����. 
 
The energy of the radiated photon in the center of mass system 
frame is considered as a soft term, ∆���� , with radiated photon 

energy	��
� < ��,  and a hard term, 	∆����, with  	��

� > �� , 

where: 
 

	��
� = ����⃗ ��

�
+ 	��

� 

 
and �� is the photon mass, which is used to regulate the (IR) 

divergences existing in the soft term. For practical calculations, 
�����	 is divided into a collinear part, where the photon is 
within an angle smaller than Δ� with respect to the radiating 
particles, and the complementary non-collinear part (Fritzsche 
and Hollik, 2004), 
 
����� 	 = 	 �����(Δ�) + 	���������(Δ�)																											         (22) 
 
���������  is calculated numerically with the help of 
multidimensional numerical integration routines DIVONNE 
that based on Monte Carlo, and CUHRE ,which are both part 
of the CUBA-library (Hahn, 2005). In Eq. (21), �� depends 

largely on the weak and QED components		∝ log ∆��

�
. 

Therefore, we extract the �� terms and the leading 

logarithms	�� 	≡ ��� �
�

��
��, caused by collinear soft photon 

emission, from the weak corrections and add them to the QED 
corrections such that both corrections are now cutoff 
independent (Denner and Dittmaier, 1993). The main part of 
the QED corrections arises from these leading logarithms		�� , 
resulting from photons in the beam direction. This leads to a 
large dependence on the experimental cuts and detector 
specifications. Therefore, We use the structure function 
formalism (Denner and Dittmaier, 1993) and subtract the 
leading logarithmic �(�) terms of the initial state 
radiation,	����,��, such that only the non-universal QED 

corrections remain. From the above discussion, we can state 
the final expression for the total renormalized cross section 
������ as following: 
������ = �� + ����� + �����	 + ����	,                                (23) 
�����	 = �����	 − �� 
����	 = ����� + �� − ����,�� 
 
with 
 

�� =
�

�
�(�� − 1)���

4Δ��

�
+
3

2
��� . �

�	, 

����,�� =
�

�
�� ���

�

�

Φ(�)��(��), 

Φ(�) = lim
�→�

��(1 − �) �
3

2
+ 2 log(�)� + �(1 − � − �)

1 + ��

1 − �
� 

 
The integrated cross section at the one-loop level, can be 
written in the following way: 
 
������ = �� + ��∆	,                                                              (24) 
 
pointing out the relative correction 
  
∆	= (������ − ��) ��⁄ ,                                                         (25) 
 
with respect to the Born cross section. 
The relative correction ∆ can be decomposed into the 
following parts, indicating their origin, 
 
∆= ∆���� + ∆������ + ∆��� + ∆��� + ∆����                        (26) 

 
Numerical Results 

 
In present work, two different scenarios are studied. In the 
Higgsino scenario the neutralinos are both nearly pure 
higgsinos and therefore the process is dominated by the s-
channel ��	exchange. In the Gaugino scenario with binos as 
	���

�	states, the selectron exchange diagrams play the most 
important role. Both scenarios are chosen such that, 
for	tan� ≈ 10, the lightest-scalar mass is about �� ≈ 125 
GeV. It was found from calculations for both scenarios that the 

SUSY scalar fermions �� have masses of order of 1.3 TeV.  For 
the SM input parameters the following values have been used: 
 

�(��) 1 127.922⁄  

�� 80.399	GeV 
�� 91.187 GeV 
�� 174.3 GeV 
�� 4.7 GeV 

 
�� is fixed by the gaugino unification relation: 
 

�� =
�

�
tan�����, 

 
and the gluino mass is related to ��by:  
 
��� = (��(���)/�)sin

�����. 

where 
 
sin	��� = 1 − ��

� ��
�⁄  

 
In the following numerical examples, the mass spectrum of the 
SUSY particles are set as shown in Tables 1 and 2 for 
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Higgsino and Gaugino scenarios respectively. The free 
parameters that have been used in the calculations are specified 
as follows: 
 

 For simplicity, all soft-SUSY-breaking parameters are 
assumed equal and all trilinear couplings are set to a 
common value		� in the sfermions sector.  

 The mixing between sfermion generations is neglected, 
such that, 	����� ≡ ��� ≃ ���.  

 The MSSM Higgs sector is parametrized by the CP-odd 
mass,	��, and tan�, taking into account radiative 
corrections with the help of FormCalc.  

 The chargino–neutralino sector is fixed by choosing a 
value for the gaugino-mass terms	��, �� and for the 
Higgsino-mass term	�.  

 
Table 1. The mass spectrum of the SUSY particles for Higgsino 

scenario 
 

Particle Mass/(GeV) Particle Mass/(GeV) 

ℎ� 125.049      ���
� 86.3240 

�� 700.275 ���
� 111.646 

�� 700.000 ���
� 200.218 

�±  704.600 ���
� 416.025 

�� 1063.46 ��� 1323.46   

���
±  99.2230 ��� 1323.46 

���
±  416.032 ��� 1323.46      

�̃� 1325.68 �̃� 1325.85   

��� 1325.67    ��� 1325.87   

�̃� 1324.83    �̃� 1326.71 

��� 1323.92  ��� 1324.54 

��� 1325.23        ��� 1326.31 

�̃� 1323.86       �̃� 1324.60 

�̃� 1325.26     �̃� 1326.31  

�̃� 1308.68 �̃� 1361.51    

��� 1323.25     ��� 1328.29 

 
Table 2. The mass spectrum of the SUSY particles for Gaugino 

scenario 
 

Particle Mass/(GeV) Particle Mass/(GeV) 

ℎ� 125.116   ���
� 91.5340 

�� 394.039      ���
� 181.009 

�� 393.600 ���
� 359.502 

�±  401.727 ���
� 378.874 

�� 525.351 ��� 1298.43     

���
±  180.516 ��� 1298.43      

���
±  379.562 ��� 1298.43      

�̃� 1300.69    �̃� 1300.87    

��� 1300.61       ��� 1300.95      

�̃� 1298.25       �̃� 1303.31    

��� 1298.89       ��� 1299.53 

��� 1300.23    ��� 1301.34 

�̃� 1298.89  �̃� 1299.54    

�̃� 1300.21     �̃� 1301.35 

�̃� 1301.68 �̃� 1319.36 

��� 1294.11    ��� 1307.44     

1. Higgsino Scenario 
 
The parameters are set as: 
 
{��,	�,	�, tan�,		��, ,	�����} = {400 GeV, -100 GeV, 400 
GeV, 10, 700 GeV, 1325 GeV} 
 

 
 

Figure 5. Total cross section as a function of √� in the Higgsino 
scenario 

 

 
 

Figure 6. Relative corrections as a function of √� in the Higgsino 
scenario 

 
Table 3. The maximum cross sections in Higgsino scenario 

 
 (�)��� /Pb √�	/GeV 

Born  2.67 × 10�� 750 
1-loop 3.25 × 10�� 775 
QED  1.24 × 10�� 950 
Weak 3.31 × 10�� 750 
Total 5.11 × 10�� 775 

 
2. Gaugino Scenario 
 
The parameters are set as: 
 
{��,	�,	�, tan�,		��, ,	�����} = {197.6 GeV, 353.1 GeV, 
100 GeV, 10.2, 393.6 GeV, 1300 GeV} 
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Figure 7. Total cross section as a function of √� in the Gaugino 
scenario 

 

 
 

Figure 8. Relative corrections as a function of √� in the Gaugino 
scenario 

 
Table 4. The maximum cross sections in Gaugino scenario 

 

 (�)��� /Pb √�	/GeV 

Born  3.20 × 10�� 750 

1-loop 5.07 × 10�� 820 

QED  2.66 × 10�� 850 

Weak 3.97 × 10�� 750 

Total 1.17 × 10�� 800 

 
Conclusion 
 
In this work, the full electroweak radiative corrections at one-
loop level to the lightest neutralino pair production with light 
neutral Higgs boson at electron-positron LC have been 
calculated in the frame of MSSM. The calculation was 
performed in an analytical using the FeynArts-3.6 and 
FormCalc-7.1 computer packages, where we modified the 
MSSM model file implemented in FeynArts-3.6. We have 
calculated the weak and QED corrections, which contribute 
significantly to the total cross section. The full electroweak 

radiative corrections have improved the LO cross section by 
about 76-125% for Higgsino scenario, and by about 239-296% 
for Gaugino scenario, thus they have to be taken into account 
in future linear collider experiments and in the theoretical 
calculations. The maximum cross sections are presented in 
Tables 3 and 4 for both scenarios.  
 
The same process had been studied for the same parameters for 
each scenario but with different values of ����� (Seif, 2017). 
The comparison between the results in this work and those in 
Ref. (Seif, 2017) shows the effect of ����� value on the 
lightest MSSM CP-even Higgs particle mass as shown in the 
following table: 
 

 Higgsino scenario Gaugino scenario 

 
Previous 
study(28) 

Current 
study 

Previous 
study(28) 

Current 
study 

�����(GeV) 350  1325 500 1300 

�� (GeV) 105.341  125.049     110.985 125.116   

 
Since the mass of the Higgs boson has been confirmed by 
experimental investigation to be in a range of 125-127 GeV, It 
is expected that the mass scale of superpartner to be in the 
range of 1-2 TeV. In general, by comparing the cross section 
values of the two scenarios, it is found that the Higgsino 
scenario has larger values for all types of correction than that 
of the Gaugino scenario.  
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