RESEARCH ARTICLE

YANG-MILLS EQUATIONS FOR A PULL BACK SYMPLECTIC YANG-MILLS FIELD

^{1,*}Lutanda Panga, G., ²Azere Phiri, P. and ³ Muyumba Kabwita, P.

- ¹Department of Mathematics and Informatic, University of Lubumbashi, Lubumbashi, D.R.Congo
- ²Department of Mathematics, Copperbelt University, Kitwe, Zambia
- ³Department of Physics, Copperbelt University, Kitwe, Zambia

Accepted 15th January, 2017; Published Online 28th February, 2017

ABSTRACT

We construct the pull back of a locally free A-module (E,π,Y) equipped with a symplectic A-form via a continuous map between two topological spaces, X and Y. We also derive, for a given symplectic Yang-Mills field (E,∇) , the pull back symplectic Yang-Mills equations.

Key words: Symplectic Vector Sheaf, Symplectic A-Connection, A-Symplectomorphism.

INTRODUCTION

In [Jost, 2008], Jost defined the pull back bundle f*(E) from a bundle (E,π,Y) over Y and a continuous map $f: X \to Y$ between two topological spaces X and Y. In [2], Mallios developed the analog theory for vector sheaves. He established that for a given vector sheaf (E,π,Y) , the inverse image $f^*(E)$ is also a vector sheaf. The purpose of this article is mainly to explore the pull back symplectic vector sheaf in detail. We suggest to consider (E,π,Y) a symplectic vector sheaf over a topological space Y, (A_Y, ∂, Ω) a differential triad of Y, $\{(E, \nabla); \sigma\}$ a symplectic Yang-Mills field and $f: X \to Y$ a continuous map between the two topological spaces X and Y. After defining $(f^*(A_Y), f^*(\partial), f^*(\Omega))$ the differential triad of X, $\{(f^*(E), f^*(\nabla)); f^*(\sigma)\}\$ the pull back symplectic Yang-Mills field and the pull back curvature $f^*(A_Y)$ -tensor of $f^*(\nabla)$, we want to establish the Yang-Mills equations of $(f^*(E), f^*(\nabla))$. We show that the left action of the group sheaf of symplectomorphism of f*(E) on the affine space of f*(A_Y)connections on $f^*(E)$ provides the Yang-Mills field (Sp($f^*(E)$, $f^*(\nabla)_{Sp(f^*(E)})$ and permits to define the symplectic Yang-Mills equations. Special attention is given to the construction of $f^*(sric)$ the symplectic Ricci $f^*(A_Y)$ -tensor on $f^*(E)$ via the pull back symplectic operator f*(sRic). Throughout this paper, A_Y \equiv (A_Y, τ ,Y) is a sheaf of commutative, associative and unital Calgebras over a topological space Y.

BASICS OF PULL BACK VECTOR SHEAF

In this section, we consider (Y,A_Y) an algebraized space relative to a topological space Y, (A_Y,∂,Ω) a differential triad of Y and a vector sheaf on Y.

*Corresponding author: Lutanda Panga, G.,

Department of Mathematics and Informatic, University of Lubumbashi, Lubumbashi, D.R. Congo.

Definition 2.1 Let $E \equiv (E, \pi, Y)$ be a vector sheaf on a topological space Y and $f: X \rightarrow Y$ a continuous map, the inverse image sheaf of E, denoted $f^*(E)$, is defined by $f^*(E) \equiv f^{-1}(E) = \{(x, z) \in X \times E : f(x) = \pi(z)\}$ where X is a topological space. (For more details, see for instance [Mallios, 1998], p79.). The inverse image sheaf of E, also named the pull back vector sheaf, is a subspace of $X \times E$ i.e $f^*(E) \subset X \times E$.

Definition 2.2 Given two vector sheaves (E,π,Y) and (F,ρ,Y) , $\phi: E \to F$ a sheaf morphism and $f: X \to Y$ a continuous map, the map $f^*(\phi): f^*(E) \to f^*(F)$ so that for every $f^*_V(t) \in f^*(E)(f^{-1}(V))$, $f^*(\phi)(f^*_V(t)) = f^*_V(\phi(t))$ is the pull back sheaf morphism of ϕ , where X and Y are topological spaces, $t \in E(V)$ and V an open in Y. The sheaf morphism $f^*(\phi): f^*(E) \to f^*(F)$ is fiber preserving, i.e for any $x \in X$, $f^*(\phi)(f^*(E))_x \subseteq (f^*(F))_x$.

Definition 2.3 Let $E \equiv (E,\pi,Y)$ be a locally free A_Y -module on a topological space Y and $(A_Y,\partial,\,\Omega)$ a differential triad of Y. The continuous map $f\colon X{\longrightarrow} Y$ defines $(f^*(A_Y),\,f^*(\partial),\,f^*(\Omega))$ a differential triad on X. For $f^*_V(\alpha),\,f^*_V(\beta)\in f^*(A_Y)(f^{-1}(V))$, one gets $f^*(\partial)(f_V(\alpha).f_V(\beta))=f^*(\partial)(f_V(\alpha)).f_V(\beta)+f_V(\alpha).f^*(\partial)(f_V(\beta))$ with $\alpha,\,\beta\in A_Y(V)$ and V an open subset of Y.

Definition 2.4 Given a continuous map $f: X \to Y$ between two topological spaces, $E \equiv (E,\pi,Y)$ a locally free A_Y -module on Y, (A_Y,∂,Ω) a differential triad of Y and an A_Y -connection on E, the sheaf morphism $f^*(\nabla): f^*(E) \to f^*(E) \bigotimes_{f^*(AY)} f^*(\Omega)$ so that for every $f_V(\alpha) \in f^*(A_Y)(f^{-1}(V))$ and $f_V(s) \in f^*(E)(f^{-1}(V))$, $f^*(\nabla)(f^*_V(\alpha).f^*_V(s)) = f^*_V(\alpha)f^*(\nabla)(f^*_V(s)) + f^*_V(s) \bigotimes f^*(\partial)(f^*_V(\alpha))$, is called an $f^*(A_Y)$ -connection on $f^*(E)$ with $\alpha \in A_Y(V)$, $s \in E(V)$ and V an open subset of Y. Since $f^*(E) \bigotimes_{f^*(AY)} f^*(\Omega) = End_{f^*(AY)} f^*(E)$, we can write $f^*(\nabla) \in Hom(f^*(E), End_{f^*(AY)} f^*(E))$ and for any sections $f^*_V(t)$, $f^*_V(s) \in f^*(E)(f^{-1}(V))$ we get $f^*(\nabla)(f^*_V(t))$.

 $(f^*_V(s)) \in f^*(E)(f^{-1}(V))$ with $t, s \in E(V)$ and V an open subset of Y. We notice that $f^*(\Omega)(End_{f^*(AY)}f^*(E)) = Hom(f^*(E), End_{f^*(AY)}f^*(E))$. The set of $f^*(A_Y)$ -connections on the inverse image sheaf of E is an affine space denoted by $Conn_{f^*(AY)}f^*(E)$.

PULL BACK SYMPLECTIC VECTOR SHEAF

Proposition 3.1 Given $f: X \rightarrow Y$ be a continuous map between two topological spaces. Let $E \equiv (E, \pi, Y)$ be a locally free A_Y -module on a topological space Y endowed with σ a symplectic A_Y -form. Then the inverse image sheaf of E is a locally free $f^*(A_Y)$ -module on a topological space X equipped with the symplectic $f^*(A_Y)$ - form $f^*(\sigma)$.

Proof. Consider $E \equiv (E,\pi,Y)$ a locally free A_Y -module on a topological space Y, i.e a symplectic vector sheaf (E,σ) . From the definition (2.1), it appears that $f^*(E)$ is a vector sheaf on X. Now, we can show that $f^*(\sigma) : f^*(E) \bigoplus f^*(E) \longrightarrow f^*(A_Y)$ is a symplectic $f^*(A_Y)$ -form.

- (i) For any $f^*_{V}(t)$, $f^*_{V}(s) \in f^*(E)(f^{-1}(V))$, $f^*(\sigma)(f^*_{V}(s), f^*_{V}(t)) = f^*_{V}(\sigma(s, t))$
- $=f^*_V\left(-\sigma(t,s)\right)$
- $= -f_V^*(\sigma(t, s))$
- $=-f^*(\sigma)(f^*_V(t), f^*_V(s))$

with s, $t \in E(V)$, V an open subset of Y.

(ii) For any $f^*_V(s) \in f^*(E)(f^{-1}(V))$, $s \in E(V)$, V an open subset of Y, if $f^*(\sigma)(f^*_V(s),f^*_V(t)) = 0$, for all $f^*_V(t) \in f^*(E)(f^{-1}(V))$ i.e $f^*(\sigma)(f^*_V(s),f^*_V(t)) = 0$ for all $t \in E(V)$, then t = 0 (we use the fact that σ is non degenerate). Thus, $f^*_V(t) = 0$ and we deduce that $f^*(\sigma)$ is a non-degenerate $f^*(A_Y)$ - form on $f^*(E)$. Hence, $f^*(\sigma)$ is a symplectic $f^*(A_Y)$ -form on $f^*(E)$ and we conclude that $(f^*(E),f^*(\sigma))$ is a symplectic vector sheaf on the topological space X.

We recall that an A_Y -connection on a symplectic vector sheaf (E, σ) such that

$$\partial[\sigma(t, r)](s) = \sigma(\nabla(s)(t), r) + \sigma(t, \nabla(s)(r)) \tag{1}$$

is named a symplectic A_Y - connection, for any $s,t,r\in E(V)$ and V an open subset of Y (see [5]).

Proposition 3.2 If ∇ is a symplectic A_Y -connection on a symplectic vector sheaf $E \equiv (E, \pi, Y) \equiv (E, \sigma)$ and $f: X \rightarrow Y$ is a continuous map then $f^*(\nabla)$ is a symplectic $f^*(A_Y)$ -connection on $(f^*(E), f^*(\sigma))$ where X and Y are two topological spaces.

Proof. Since ∇ is a symplectic A_Y -connection on E, equation (1) holds. The application of $f^*_V: A_Y \to f^*(A_Y)(f^{-1}(V))$ to (1) gives $f^*_V \hat{\mathcal{C}}[\sigma(t,r)](s) = f^*_V(\sigma(\nabla(s)(t),r)) + f^*_V(\sigma(t,\nabla(s)(r)))$, which can be rewritten either as

 $f^*(\partial)[f^*_V\sigma(t,r)](f^*_V(s)) = f^*(\sigma)(f^*(\nabla)(\ f^*_V(s))(\ f^*_V(t),\ f^*_V(r)) +$

$$f^*(\sigma)(f^*_V(t), f^*(\nabla)(f^*_V(s))(f^*_V(r))$$
 (2)

or as

$$f^{*}(\partial)[f^{*}_{V}\sigma(t,r)](f^{*}_{V}(s)) = f^{*}(\partial)[f^{*}(\sigma)(f^{*}_{V}(t),f^{*}_{V}(r))](f^{*}_{V}(s))$$
(3)

for any sections $f^*_V(t)$, $f^*_V(r)$, $f^*_V(s)$ of $f^*(E)$. It follows from the relations (2) and (3) that

 $\begin{array}{lll} f^*(\widehat{\sigma})[f^*(\sigma)(f^*_V(t), & f^*_V(r))](f^*_V(s)) = & f^*(\sigma)(f^*(\nabla)(f^*_V(s))(f^*_V(t), \\ f^*_V(r)) + & f^*(\sigma)(f^*_V(t), & f^*(\nabla)(f^*_V(s))(f^*_V(r)). & \text{Thus, } f^*(\nabla) \text{ is a symplectic } f^*(A_Y)\text{-connection on } f^*(E). \end{array}$

We remark that given $\{(E, \nabla); \sigma)\}$ a symplectic Yang-Mills field on Y, and $f: X \to Y$ a continuous map, $\{(f^*(E), f^*(\sigma)); f^*(\sigma)\}$ is a symplectic Yang-Mills field on the topological space X.

Proposition 3.3 Given two topological spaces X and Y, f: $X \rightarrow Y$ a continuous map between them, $E \equiv (E,\sigma)$ a symplectic vector sheaf over Y and $(f^*(E), f^*(\sigma))$ the inverse sheaf of (E, σ) . If ψ is an A_Y -symplectomorphism of E then $f^*(\psi)$ is a $f^*(A_Y)$ -symplectomorphism of $f^*(E)$.

Proof. By definition, ψ verifies the relation $\sigma \circ (\psi, \psi) = \sigma$. Since $\psi \in Sp(E)$ and $f : X \rightarrow Y$ are continuous maps, one obtains $f^*(\psi) : f^*(E) \rightarrow f^*(E)$.

For any sections $f_V(t)$, $f_V(r)$, $f_V(s) \in f(E)(f^{-1}(V))$,

 $f^*(\sigma) \circ (f^*(\psi), f^*(\psi))(f^*_V(t), f^*_V(s))$

- $= f^*(\sigma) \circ (f^*(\psi)(f^*_{V}(t)), f^*(\psi)(f^*_{V}(s))),$
- $= f^*(\sigma)(f^*_V(\psi)(t), f^*_V(\psi)(s))$
- $= f^*_V(\sigma(\psi(t), \psi(s)))$
- $= f^*_V(\sigma(t, s))$
- = $f^*(\sigma)(f^*_V(t), f^*_V(s))$.

Thus, $f^*(\psi)$ is a $f^*(A_Y)$ - symplectomorphism of $f^*(E)$.

We denoted by $Sp(f^*(E))$ the group sheaf of $f^*(A_Y)$ -symplectomorphisms of $f^*(E)$. Using the action of the group sheaf of A_Y - symplectomorphisms of E on $Conn_{AY}$ (E, σ) given by $Sp(E) \times Conn_{AY}(E, \sigma) \to Conn_{AY}(E, \sigma), (\phi, \nabla) \to \nabla' = \phi^\circ \nabla^\circ \phi^{-1}$, the continuous map $f\colon X \to Y$ allows us to deduce the action of the group sheaf of $f^*(A_Y)$ -symplectomorphisms of $f^*(E)$ on $Conn_{f^*(AY)}(f^*(E), f^*(\sigma))$, $Sp(f^*(E)) \times Conn_{f^*(AY)}(f^*(E), f^*(\sigma))$,

$$f^*(\nabla') = f^*(\varphi) \circ f^*(\nabla) \circ f^*(\varphi^{-1}). \tag{4}$$

It is obvious that this action defines an equivalence relation on $f^*(E)$ by $f^*(\nabla) \sim f^*(\nabla')$ if and only if there exits

$$f^*(\varphi) \in \operatorname{Sp}(f^*(E))$$
 such that $f^*(\nabla') = f^*(\varphi) \circ f^*(\nabla) \circ f^*(\varphi^{-1})$

for any
$$f^*(\nabla)$$
, $f^*(\nabla') \in Conn_{f^*(AY)}(f^*(E), f^*(\sigma))$.

The quotient $Conn_{f^*(AY)}(f^*(E),f^*(\sigma))/Sp(f^*(E))$ is called the moduli space of the symplectic $f^*(A_Y)$ -connections on $f^*(E)$ and the equivalence class of $f^*(\nabla)$ or its orbit is the following set:

$$[f^*(\nabla)] = \{ f^*(\nabla') = f^*(\phi) \circ f^*(\nabla) \circ f^*(\phi^{-1}), f^*(\phi) \in Sp(f^*(E)) \}$$
 (5)

We remark that a $f^*(A_Y)$ - connection on $f^*(E)$ induces the following $f^*(A_Y)$ - connection on $Sp(f^*(E))$, $f^*(\nabla)_{Sp(f^*(E))}(f^*(\phi)) = f^*(\nabla) \circ f^*(\phi) - (f^*(\phi) \otimes 1_{f^*(\Omega)}) \circ f^*(\nabla)$ where $f^*(\phi) \in Sp(f^*(E))$, $\phi \in Sp(E)$ and $f: X \to Y$ a continuous map. The symplectic Yang-Mills field $(f^*(E), f^*(\nabla))$ provides the Yang-Mills field $(Sp(f^*(E)), f^*(\nabla)_{Sp(f^*(E))})$. Recall that the first prolongation of a symplectic A_Y -connection ∇ on a symplectic vector sheaf (E, σ) is given by $\nabla^1: E \bigotimes_{AY} \Omega \to E \bigotimes_{AY} \Omega^2$. From $f: X \to Y$ a continuous map and ∇^1 , one gets

 $\begin{array}{lll} f^*\nabla^1)\colon & f^*(E) \bigotimes_{f^*AY} f^*(\Omega) & \to & f^*(E) \bigotimes_{f^*AY} f^*(\Omega^2) & \text{the} & \text{first} \\ & \text{prolongation of } f^*(\nabla). \end{array}$

Definition 3.4 Let $f: X \to Y$ be a continuous map two topological spaces, $E \equiv (E,\pi,Y)$ a locally free A_Y - module on Y endowed with a symplectic A_Y - form σ and ∇ and A_Y - connection on (E,σ) , the curvature of the symplectic $f^*(A_Y)$ - connection is defined by $R(f^*(\nabla)) = f^*(\nabla^1) \circ f^*(\nabla)$.

The pull back preserves the curvature in sense of $R(f^*(\nabla)) = f^*(R(\nabla))$ (see [3], p.235).

Definition 3.5 Given $f: X \rightarrow Y$ a continuous map, (E, π, Y) a symplectic vector sheaf over Y and an A_Y - connection on E, the curvature $f^*(A_Y)$ - tensor of $f^*(\nabla)$ is defined by

$$\begin{array}{l} R_{|f^{-1}(V)}(f^{*}_{V}(s), \, f^{*}_{V}(t)) \, \, f^{*}_{V}(r) \, = \, R(f^{*}_{V}(s), \, f^{*}_{V}(t)) \, \, f^{*}_{V}(r) \\ = \, f^{*}(\nabla)(\, \, f^{*}_{V}(s)) \, \, f^{*}(\nabla)(\, \, f^{*}_{V}(t)) \, - \, f^{*}(\nabla)(\, \, f^{*}_{V}(t)) \, \, f^{*}(\nabla)(\, \, f^{*}_{V}(s)) \, - \\ f^{*}(\nabla)([f^{*}_{V}(s), \, f^{*}_{V}(t)]) \, \, f^{*}_{V}(t) \, (r), \end{array} \tag{6}$$

for any $f^*_V(s)$, $f^*_V(t)$, $f^*_V(r) \in f^*(E)(f^{-1}(V))$, $s, t, r \in E(V)$ and V an open subset of Y.

The last relation (6) can be written as

$$R_{|f-1(V)}(f^*_{V}(s), f^*_{V}(t)) f^*_{V}(r)$$

$$=(f_{V}(\nabla)(s)f_{V}(\nabla)(t)-f_{V}(\nabla)(t)f_{V}(\nabla)(s)-[f_{V}(\nabla)(s),f_{V}(\nabla)(t)])$$

$$f^*_{V}(r), \tag{7}$$

for any $f^*_V(s)$, $f^*_V(t)$, $f^*_V(t) \in f^*(E)(f^{-1}(V))$, s, t, $t \in E(V)$ and V an open subset of Y. The curvature operator associated with the symplectic Yang-Mills field $(f^*(E), f^*(\nabla))$ is defined by $R_{|f^{-1}(V)|}(\cdot, f^*_V(s))f^*_V(t) = R(f^*_V(s))f^*_V(t) \in End_{f^*(AY)}$

$$(f^*(E)(f^{-1}(V))),$$
 (8)

for any $f^*_V(s)$, $f^*_V(t)$, $f^*_V(r) \in f^*(E)(f^{-1}(V))$, $s, t, r \in E(V)$ and V an open subset of Y.

Definition 3.6 Let ric be the Ricci curvature A_Y - tensor of an A_Y -connection ∇ on E and let $f: X \to Y$ be a continuous map between topological spaces. The Ricci curvature $f^*(A_Y)$ -tensor on $f^*(E)$, denoted by $f^*(ric)$, is defined by $f^*(ric)_{|f-1(Y)|}(f^*_{V}(s)$,

$$f_{V}^{*}(t) = tr(f_{V}^{*}(r) \to R(f_{V}^{*}(r), f_{V}^{*}(s)) f_{V}^{*}(t)$$
 (9)

for any $f^*_V(s)$, $f^*_V(t)$, $f^*_V(r) \in f^*(E)(f^{-1}(V))$, $s, t, r \in E(V)$ and V an open subset of Y.

Definition 3.7 Let sR be the symplectic curvature A_Y -tensor associated with the curvature of a symplectic A_Y -connection on a symplectic vector sheaf $E \equiv (E,\pi,Y) \equiv (E,\sigma)$ and let $f: X \rightarrow Y$ be a continuous map between topological spaces,

f*(sR) defined by

$$\begin{array}{l} f^*(sR)_{|f^-l(V)}(f^*_V(s),\,f^*_V(t),\,f^*_V(l))\\ = f^*(\sigma)(R_{|f^-l(V)}(f^*_V(s),\,f^*_V(t))\,\,f^*_V(r),\,f^*_V(l)),\\ \text{is the symplectic curvature } f^*(A_Y) \text{ - tensor relative to the}\\ f^*(A_Y) \text{ - connection } f^*(\nabla),\,\,\text{for any }\,f^*_V(s),\,\,f^*_V(t),\,\,f^*_V(l),\,\,f^*_V(l)\in f^*(E)(f^{-1}(V)),\,s,\,t,\,r,\,l\in E(V)\,\,\text{and}\,\,V\,\,\text{an open subset of}\,\,Y\,\,. \end{array}$$

Referring to a local gauge $e^V=\{V;e_1,\ e_2,\ ...,\ e_{2n}\}$ of a symplectic vector sheaf $E\equiv(E,\pi,Y)\equiv(E,\sigma)$ of rank 2n where V is an open subset of Y, the continuous $f:X\to Y$ defines $f^*(e^V)=\{f^{-1}(V);\ f^*(e_1),\ f^*(e_2),\ ...,\ f^*(e_{2n})\}$ a local gauge of the inverse image sheaf $f^*(E).$

Proposition 3.8 Let $E \equiv (E,\pi,Y)$ be a vector sheaf over a topological space Y and $f: X \to Y$ be a continuous map. If J: $E \to E$ is an A_Y - complex structure on E then the pull back of J is a $f^*(A_Y)$ - complex structure on $f^*(E)$.

Proof. The pull back of J is the sheaf morphism

$$f^{*}(J): f^{*}(E) \to f^{*}(E) \text{ so that}$$

$$(f^{*}(J))^{2}(f^{*}_{V}(s)) = f^{*}(J)(f^{*}_{V}(J)(f^{*}_{V}(s))$$

$$= f^{*}(J)(f^{*}_{V}J(s))$$

$$= f^{*}_{V}(J|J|s))$$

$$= f^{*}_{V}(J^{2}(s))$$

$$= f^{*}_{V}(-id_{E(V)}(s))$$

$$= -f^{*}_{V}(s), \qquad (10)$$

for any $f^*_V(s) \in f^*(E)(f^{-1}(V))$, $s \in E(V)$ and V an open subset of Y. Thus $f^*(J)$ is a $f^*(A_Y)$ - complex structure on $f^*(E)$.

Definition 3.9 Let sRic be the symplectic Ricci operator of $E \equiv (E,\sigma)$ and $f: X \to Y$ a continuous map between two topological spaces, $f^*(sRic)$, is defined by $f^*(sRic)|_{f^{-1}(V)} (f^*_{V}(s)) = \sum (f^*_{V}(e_i)$,

$$f^*(J)f^*_V(e_i) f^*_V(s), i=1,2,...,n,$$
 (11)

it is the symplectic Ricci operator of $f^*(E)$, for any $f^*_V(s) \in f^*(E)(f^{-1}(V))$, $s \in E(V)$, V an open subset of Y and $f^*(J)$ the pull back of the complex structure J of E.

We also define the symplectic Ricci $f^*(A_Y)$ -tensor on $f^*(E)$ as follows :

$$f^*(\text{sric})|_{f^{-}(V)}^{-1}(f^*_{V}(s), f^*_{V}(t)) = f^*(\sigma)(s\text{Ric}(f^*_{V}(s), f^*_{V}(t))$$
(12)

for any $f^*_V(s)$, $f^*_V(t) \in f^*(E)(f^{-1}(V))$, $s, t \in E(V)$ and V an open subset of Y.

PULL BACK OF SYMPLECTIC LAPLACE - BELTRAMI OPERATOR

Consider (Y,A_Y) a \mathbb{C} -algebraized space, (A_Y,∂,Ω) a differential triad of Y, a continuous map $f:X\to Y$ defines $(f^*(A_Y),f^*(\partial),f^*(\Omega))$ a differential triad of X from which we derive the m^{th} - prolongation of $f^*(\partial)$, denoted by $f^*(d^m)$. Since the m^{th} - prolongation of $d^m:\Omega^m\to\Omega^{m+1}$ of $\partial:AY\equiv\Omega^0\to\Omega^1$ is defined by

$$d^{m}(s \wedge t) = d^{p+q}(s \wedge t) = d^{p}(s) \wedge t + (-1)^{p} s \wedge d^{q}(t)$$
(13)

for every $s \in \Omega^p(V)$, $t \in \Omega^q(V)$, $p, q \in IN$ and V open in Y (see for instance [4]), one obtains the pull back of d^m ,

$$\begin{split} &d^{m}:\Omega^{m}\to\Omega^{m+1} \text{ so that} \\ &f^{*}(d^{m})(f^{*}_{V}(s)\wedge f^{*}_{V}(t))=f^{*}(d^{p+q})(\ f^{*}_{V}(s)\wedge f^{*}_{V}(t)) \\ &=f^{*}(d^{p})(\ f^{*}_{V}(s))\wedge f^{*}_{V}(t)+(-1)^{p}\ f^{*}_{V}(s)\wedge f^{*}(d^{q})(\ f^{*}_{V}(s)) \\ &=f^{*}_{V}(d^{p}(s))\wedge f^{*}_{V}(t)+(-1)^{p}\ f^{*}_{V}(s)\wedge f^{*}_{V}(d^{q}(t)) \end{split} \tag{14}$$

for any $f^*_V(s) \in f^*(\Omega^p)(f^{-1}(V)), f^*_V(t) \in f^*(\Omega^q)(f^{-1}(V))$ and V open in Y.

We recall that for a given vector sheaf E over Y, the m^{th} -prolongation of the A_Y - connection $\nabla \equiv \nabla^0 : \Omega^0(E) \to \Omega^1(E)$, $\nabla^m : \Omega^m(E) \to \Omega^{m+1}(E)$ is defined by

$$\nabla^{m}(s \otimes t) = s \otimes d^{m}(t) + (-1)^{m} t \otimes \nabla (s)$$
 (15)

for any $s \in E(V)$, $t \in \Omega^m(V)$ and V open in Y (see [4]).

Definition 4.1 Let (E, ∇) be a Yang-Mills field over a topological space $Y, \nabla^m : \Omega^m(E) \to \Omega^{m+1}(E)$ the m^{th} -prolongation of the A_Y - connection ∇ and $f : X \to Y$ a continuous map between two topological spaces, the pull back of ∇ , denoted $f^*(\nabla^m)$, is defined from by

$$\begin{array}{l} f^*(\nabla^m): f^*(\Omega^m) \ (f^*\left(E\right)) \rightarrow f^*(\Omega^{m+1}) \ (f^*(E)), \\ f^*(\nabla^m) \ (f^*_V(s) \otimes f^*_V(t)) = f^*_V(s) \otimes f^*_V(d^m) (\ f^*_V(t)) + (-1)^m \ f^*_V \ (t) \\ \otimes f^*(\nabla) \ (f^*_V(s)) \end{array}$$

(16)

for any $f^*_{V}(s) \in f^*(E)(f^{-1}(V))$, $f^*_{V}(t) \in f^*(\Omega^m)(f^{-1}(V))$, and V open in Y.

We can rewrite (16) as follows:

$$f^*(\nabla^m) (f^*_V(s) \otimes f^*_V(t)) = f^*_V(s) \otimes f^*_V(d^m(t)) + (-1)^m f^*_V(t) \otimes f^*(\nabla(s))$$

$$(17)$$

for any $f^*_V(s) \in f^*(E)(f^{-1}(V))$, $f^*_V(t) \in f^*(\Omega^m)(f^{-1}(V))$, and V open in Y.

We recall that on (E,σ) a symplectic vector sheaf over Y, the dual differential operator of ∇ , $\delta^{m+1}:\Omega^{m+1}(E)\to\Omega^m(E)$ is such that

$$\sigma \nabla^{m}(s), t) = \sigma(s, \delta^{m+1}(t)), \tag{18}$$

for any $s \in \Omega^m(E(V))$, $t \in \Omega^{m+1}(E(V))$, with V open in Y (see [5]).

Definition 4.2 Let $\{(E,\nabla),\sigma\}$ be a symplectic Yang-Mills field over a topological space $Y, \, \delta^{m+1}$ the dual differential operator of ∇ and $f: X \to Y$ a continuous map between two topological spaces, $f^*(\delta^{m+1}): f^*(\Omega^{m+1}(E)) \to f^*(\Omega^m(E))$ is such that

$$f^*(\sigma)(f^*(\nabla^m)(f^*_{V}(s), f^*_{V}(t)) = f^*(\sigma)(f^*_{V}(s), f^*(\delta^{m+1})(f^*_{V}(t)))$$
(19)

is the pull back of δ^{m+1} , for every $f^*_V(s) \in f^*(\Omega^m(E))(f^{-1}(V))$, $f^*_V(t) \in f^*(\Omega^{m+1}(E))$ $(f^{-1}(V))$ and V open in Y.

(19) can be expressed as follows

$$f^*(\sigma)(f^*(\nabla^m)(f^*_V(s), f^*_V(t)) = f^*(\sigma)(f^*_V(s), f^*_V(\delta^{m+1}(t)),$$
 (20)

$$f_{V}(\sigma(\nabla^{m}(s), t)) = f_{V}(\sigma(s, \delta^{m+1}(t)), \tag{21}$$

for any $f^*_V(s) \in f^*(\Omega^m(E))(f^{-1}(V)), f^*_V(t) \in f^*(\Omega^{m+1}(E))$ and V open in Y.

Hence,

$$f^*(\sigma)(f^*(\nabla^m)(f^*_{V}(s), f^*_{V}(t)) = f^*_{V}(\sigma(s, \delta^{m+1}(t))).$$

From the symplectic Laplace-Beltrami operator corresponding to a symplectic A_Y - connection ∇ on a symplectic vector sheaf (E, σ) ,

$$\Delta^{m} = \delta^{m+1} \circ \delta^{m} \tag{22}$$

(see[4]) and a continuous map $f: X \to Y$ between topological spaces, one gets the pull back of Δ^m ,

$$f^*(\Delta^m) = f^*(\delta^{m+1}) \circ f^*(\nabla^m) + f^*(\nabla^{m-1}) \circ f^*(\delta^m)$$
 (23)

which is the symplectic Laplace-Beltrami operator corresponding to the $f^*(A_Y)$ -connection $f^*(\nabla)$ on $(f^*(E), f^*(\sigma))$.

It follows that the Laplace-Beltrami operator corresponding to the $f^*(A_Y)$ -connection $f^*(\nabla)_{Sp(f^*(E))}$ on the Yang-mills field $(Sp(f^*(E)), f^*(\nabla)_{Sp(f^*(E))})$ is given by

$$\begin{array}{l} f^*(\Delta^m_{Sp(f^*(E))}) = f^*(\delta^{m+1}_{Sp(f^*(E))}) \circ f^*(\nabla^m_{Sp(f^*(E))}) + f^*(\nabla^{m-1}_{Sp(f^*(E))}) \circ \\ f^*(\delta^m_{Sp(f^*(E))}). \end{array} \tag{25}$$

In particular for m = 2, one gets

$$\begin{array}{l} f^*(\Delta^2_{Sp(f^*(E))}) = f^*(\delta^3_{Sp(f^*(E))}) \circ f^*(\nabla^2_{Sp(f^*(E))}) + f^*(\nabla_{Sp(f^*(E))}) \circ f^*(\delta^2_{Sp(f^*(E))}) \\ \text{which is the pull back for} \end{array} \end{pure}$$

$$\Delta^2_{\text{Sp(E)}} = \delta^3_{\text{Sp(E)}} \circ \nabla^2_{\text{Sp(E)}} + \nabla_{\text{Sp(E)}} \circ \delta^2_{\text{Sp(E)}}$$
 developed in [5].

Hence, the Yang-Mills equations of $(f^*(E), f^*(\nabla))$ are

$$f^*(\Delta^2_{Sp(f^*(E))})(R(f^*(\nabla))) = 0$$
(27)

and

$$f^*(\delta^2_{Sp(f^*(E))})(R(f^*(\nabla))) = 0$$
(28)

where $R(f^*(\nabla)) = f^*(R(\nabla))$ is the pull back of $R(\nabla)$.

Conclusion

In this paper, more details and results about the pull back symplectic vector sheaf and the pull back symplectic Yang-Mills field are given. We mainly apply the pull back symplectic Laplace-Beltrami operator to define the symplectic Yang-Mills equations on the Yang-Mills field ($f^*(E), f^*(\nabla)$).

REFERENCES

Jost, J. 2008. Riemannian Geometry and Geometric Analysis. Fifth Edition, Springer-Verlag, Berlin.

Mallios, A. 1998. Geometry of Vector Sheaves, An Axiomatic Approach to Differential Geometry.Volume I: Vector Sheaves. General Theory, Kluwer Academic Publishers, Dordrecht.

Mallios, A. 1998. Geometry of Vector Sheaves, An Axiomatic Approach to Differential Geometry, Volume II: Geometry, Examples and Applications, Kluwer Academic Publishers, Dordrecht.

Mallios, A. 2010. Modern Differential Geometry in Gauge Theories, Yang- Mills Fields, Volume II, 2010 Birkhuser Boston.

Panga, G.L., Phiri, P.A., Kabwita, P.M. Abstract for symplectic Yang-Mills fields, under refereeing.