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ABSTRACT  

 

We construct the pull back of a locally free A-module (E,π,Y) equipped with a symplectic A-form via a continuous map between two 
topological spaces, X and Y. We also derive, for a given symplectic Yang-Mills field (E,∇), the pull back symplectic Yang-Mills equations. 
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INTRODUCTION 
 
In [Jost, 2008], Jost defined the pull back bundle f∗(E) from a 
bundle (E,π,Y) over Y and a continuous map f : X →Y 
between two topological spaces X and Y. In [2], Mallios 
developed the analog theory for vector sheaves. He established 
that for a given vector sheaf (E,π,Y), the inverse image f∗(E) is 
also a vector sheaf. The purpose of this article is mainly to 
explore the pull back symplectic vector sheaf in detail. We 
suggest to consider (E,π,Y) a symplectic vector sheaf over a 
topological space Y, (AY,∂,Ω) a differential triad of Y, 
{(E,	∇);σ} a symplectic Yang-Mills field and f : X →Y a 
continuous map between the two topological spaces X and Y . 
After defining (f∗(AY), f∗(∂), f∗(Ω)) the differential triad of X, 
{(f∗(E), f∗(∇)); f∗(σ)} the pull back symplectic Yang-Mills field 
and the pull back curvature f∗(AY)-tensor of f∗(∇), we want to 
establish the Yang-Mills equations of (f∗(E), f∗(∇)). We show 
that the left action of the group sheaf of  f∗(AY)-
symplectomorphism of  f∗(E) on the affine space of  f∗(AY)-
connections on f∗(E) provides the Yang-Mills field (Sp(f∗(E), 
f∗(∇)Sp(f∗(E)) and permits to define the symplectic Yang-Mills 
equations.  Special attention is given to the construction of 
f∗(sric) the symplectic Ricci f∗(AY)-tensor on f∗(E) via the pull 
back symplectic  operator  f∗(sRic). Throughout this paper, AY 
≡ (AY,τ,Y) is a sheaf of commutative, associative and unital ℂ-
algebras over a topological space Y. 
 
BASICS OF PULL BACK VECTOR SHEAF 

 
In this section, we consider (Y,AY) an algebraized space 
relative to a topological space Y, (AY,∂,Ω) a differential  triad 
of  Y and a vector sheaf on Y. 
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Definition 2.1 Let E ≡ (E, π, Y) be a vector sheaf on a 
topological space Y and f : X→Y a continuous map, the 
inverse image sheaf of E, denoted  f∗(E), is defined by f∗(E) ≡ 
f−1(E) = {(x, z) ∈ X × E : f (x) = π(z)} where X is a topological 
space.  (For more details, see for instance [Mallios, 1998], 
p79.). The inverse image sheaf of E, also named the pull back 
vector sheaf, is a subspace of  X × E i.e f∗(E) ⊂ X × E. 
 
Definition 2.2 Given two vector sheaves (E,π,Y) and (F,ρ, Y), 
ϕ : E →F a sheaf morphism and f : X→ Y a continuous map, 
the map f∗(ϕ) : f∗(E) → f∗(F) so that for every  f∗

V(t) ∈ 
f∗(E)(f−1(V)), f∗(ϕ)(f∗

V(t)) = f∗
V(ϕ(t)) is the pull back sheaf 

morphism of ϕ, where X and Y are topological spaces, t ∈ 
E(V) and V an open in Y . The sheaf morphism  f∗(ϕ) : f∗(E) → 
f∗(F) is fiber preserving, i.e for any x ∈ X, f∗(ϕ)(f∗(E))x ⊆ 
(f∗(F))x . 
 
Definition 2.3 Let E ≡ (E,π,Y) be a locally free AY -module on 
a topological space Y and (AY,∂, Ω) a differential triad of Y. 
The continuous map f: X→Y defines (f∗(AY), f∗(∂), f∗(Ω)) a 
differential triad on X. For  f∗

V(α), f∗
V (β) ∈ f∗(AY)(f −1(V)), one 

gets  f∗ (∂)(fV(α).fV(β)) = f∗(∂)(fV(α)).fV(β) + fV(α).f∗(∂)(fV(β)) 
with α, β ∈ AY(V) and V an open subset of Y . 
 
Definition 2.4 Given a continuous map f : X→ Y between two 
topological spaces, E ≡ (E,π,Y) a locally free AY -module on 
Y, (AY,∂,Ω) a differential triad of Y and an AY-connection on 
E, the sheaf morphism f∗(∇) : f∗(E) → f∗(E)⊗f∗(AY)f∗(Ω) so that 
for every fV(α)∈ f∗(AY)(f −1(V)) and fV(s)∈ f∗(E)(f−1(V)), 
f∗(∇)(f∗

V(α).f∗
V(s)) = f∗

V(α)f∗(∇)(f∗
V(s)) + f∗

V(s)⊗f∗(∂)(f∗
V (α)), 

is called an f∗(AY)-connection on f∗(E) with α∈ AY(V), s ∈ 
E(V) and V an open subset of Y . Since  f∗(E)⊗f∗(AY)f∗(Ω) = 
End f∗(AY)f∗(E), we can write  f∗(∇) ∈ Hom(f∗(E), End 

f∗(AY)f∗(E)) and for any sections f∗
V(t), f∗

V(s) ∈ f∗(E)(f−1(V)) we 
get f∗(∇)(f∗

V(t)).   
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(f∗
V(s)) ∈ f∗(E)(f−1(V)) with t, s ∈ E(V) and V an open subset 

of Y . We notice that f∗(Ω)(End f∗(AY)f∗(E)) = Hom(f∗(E), End 

f∗(AY) f∗(E)). The set of f∗(AY)-connections on the inverse image 
sheaf of E is an affine space denoted by Connf∗(AY)f∗(E). 
 
PULL BACK SYMPLECTIC VECTOR SHEAF 
 
Proposition 3.1 Given f : X→Y  be a continuous map between 
two topological spaces. Let E ≡ (E,π,Y) be a locally free AY -
module on a topological space Y endowed with σ a symplectic 
AY -form. Then the inverse image sheaf of E is a locally free 
f∗(AY)-module on a topological space X equipped with the 
symplectic f∗(AY) - form f∗(σ). 
 
Proof. Consider E ≡ (E,π,Y) a locally free AY -module on a 
topological space Y, i.e a symplectic vector sheaf (E,σ). From 
the definition (2.1), it appears that f∗(E) is a vector sheaf on X. 
Now, we can show that f∗(σ) : f∗(E)⊕f∗(E)→f∗(AY) is a 
symplectic f∗(AY)-form. 
 
(i) For any f∗

V(t), f∗
V(s) ∈ f∗(E)(f−1(V)), f∗(σ)(f∗

V(s), f∗
V(t)) = f∗

V 
(σ(s, t))                                                                                                                                                      
= f∗

V (−σ(t, s))                                                                                                
=  − f∗

V (σ(t, s))                                                                                               
= −f∗(σ)( f∗

V(t), f∗
V(s)) 

 
with s, t ∈ E(V), V an open subset of Y. 
 
(ii) For any f∗

V(s) ∈ f∗(E)(f−1(V)), s ∈ E(V), V an open subset 
of Y, if f∗(σ)(f∗

V(s),f∗
V(t)) = 0, for all f∗

V(t) ∈ f∗(E)(f−1(V)) i.e 
f∗(σ)( f∗

V(s), f∗
V(t)) = 0 for all t ∈ E(V), then t = 0 (we use the 

fact that σ is non degenerate). Thus, f∗
V(t) = 0 and we deduce 

that f∗(σ) is a non-degenerate f∗(AY) - form on f∗(E). Hence, 
f∗(σ) is a symplectic f∗(AY)-form on f∗(E) and we conclude that 
(f∗(E),f∗(σ)) is a symplectic vector sheaf on the topological 
space X. 
 
We recall that an AY-connection on a symplectic vector sheaf 
(E, σ) such that   
 
∂[σ(t, r)](s) = σ(∇ (s)(t), r) + σ(t,	∇ (s)(r))                              (1)    
                                                                                                         
is named a symplectic AY - connection, for any s, t, r ∈ E(V) 
and V an open subset of Y (see [5]). 
 
Proposition 3.2 If ∇	is a symplectic AY-connection on a 
symplectic vector sheaf E ≡ (E,π,Y) ≡ (E, σ) and f : X →Y is a 
continuous map then f∗(∇) is a symplectic f∗(AY)-connection 
on (f∗(E),f∗(σ)) where X and Y are two topological spaces. 
 
Proof. Since ∇	is a symplectic AY-connection on E, equation 
(1) holds. The application of f∗

V : AY → f∗(AY)(f −1(V)) to (1) 
gives  f∗

V∂[σ(t, r)](s) =  f∗
V(σ(∇ (s)(t), r)) + f∗

V(σ(t, ∇ (s)(r))), 
which can be rewritten either as 
f∗(∂)[f∗

Vσ(t, r)](f∗
V(s)) = f∗(σ)(f∗(∇)( f∗

V(s))( f∗
V(t), f∗

V(r))+  
 
f∗(σ)(f∗

V (t), f∗(∇)(f∗
V(s))( f∗

V(r))                                         (2) 
 
or as 
 
 f∗(∂)[f∗

Vσ(t,r)](f∗
V(s))= f∗(∂)[f∗(σ)(f∗

V(t),f∗
V(r))](f∗

V(s))     (3)                                                                                  
 
for any sections  f∗

V(t), f∗
V(r), f∗

V(s) of f∗(E). It follows from 
the relations (2) and (3) that 

f∗(∂)[f∗(σ)(f∗
V(t), f∗

V(r))](f∗
V(s))= f∗(σ)(f∗(∇)(f∗

V(s))(f∗
V(t), 

f∗
V(r))+ f∗(σ)(f∗

V (t), f∗(∇)(f∗
V(s))(f∗

V(r)). Thus, f∗(∇) is a 
symplectic f∗(AY)-connection on f∗(E). 
 
We remark that given {(E,	∇); σ)} a symplectic Yang-Mills 
field on Y, and f : X → Y  a continuous map,  {(f∗(E), f∗(σ)); 
f∗(σ)} is a symplectic Yang-Mills field on the topological space 
X. 
 
Proposition 3.3 Given two topological spaces X and Y, f: X→ 
Y a continuous map between them, E ≡ (E,σ) a symplectic 
vector sheaf over Y and (f∗(E), f∗(σ)) the inverse sheaf of (E, 
σ). If ψ is an AY-symplectomorphism of E then f∗(ψ) is a 
f∗(AY)-symplectomorphism of f∗(E). 
 
Proof. By definition, ψ verifies the relation σ ◦ (ψ, ψ) = σ. 
Since ψ ∈ Sp(E) and f : X→  Y are continuous maps, one 
obtains f∗(ψ) : f∗(E) → f∗ (E). 
 
 For any sections f∗

V(t), f∗
V(r), f∗

V(s) ∈ f∗(E)(f−1(V)), 
 
f∗(σ) ◦ (f∗(ψ),f∗(ψ))(f∗

V(t),f∗
V(s))  

 = f∗(σ) ◦ (f∗(ψ)( f∗
V(t)), f∗ (ψ)( f∗

V(s))), 
 = f∗(σ)(f∗

V(ψ)(t), f∗
V(ψ)(s)) 

 = f∗
V(σ(ψ(t), ψ(s))) 

 = f∗
V(σ(t, s)) 

 = f∗(σ)(f∗
V(t), f∗

V(s)). 
 
Thus, f∗(ψ) is a f∗(AY) - symplectomorphism of f∗(E). 
 
We denoted by Sp(f∗(E)) the group sheaf of  f∗(AY) -
symplectomorphisms of  f∗(E). Using the action of the group 
sheaf of AY - symplectomorphisms of E on ConnAY (E, σ) 
given by Sp(E) × ConnAY(E, σ) → ConnAY(E, σ), (φ,	∇) → ∇′= 
φ◦∇◦φ-1, the continuous map f: X →Y allows us to deduce the 
action of the group sheaf of f∗(AY) -symplectomorphisms of  
f∗(E) on Connf∗(AY)(f∗(E), f∗(σ)), Sp(f∗(E)) × Connf∗(AY) 
(f∗(E),f∗(σ)) → Connf∗(AY)(f∗(E),f∗(σ)), 
 
f∗(	∇′) = f∗(φ)◦f∗(	∇)◦f∗(φ-1).                                                     (4) 
 
It is obvious that this action defines an equivalence relation on 
f∗(E) by f∗(∇) ~ f∗(∇′) if and only if there exits  
 
f∗(φ) ∈	Sp(f∗(E)) such that f∗(∇′) = f∗(φ)◦f∗(∇)◦f∗(φ-1)           
                                                                                       
for any f∗(∇), f∗(∇′)  ∈ Connf∗(AY) (f∗(E),f∗(σ)). 
 
The quotient Connf∗(AY)(f∗(E),f∗(σ))/Sp(f∗(E)) is called the 
moduli space of the symplectic f∗(AY)-connections on f∗(E) 
and the equivalence class of f∗(	∇) or its orbit is the following 
set: 
 
[f∗(	∇)] = { f∗(	∇′) = f∗(φ)◦f∗(	∇)◦f∗(φ-1), f∗(φ) ∈	Sp(f∗(E))}     (5) 
 
We remark that a f∗(AY) - connection on f∗(E) induces the 
following f∗(AY) - connection on Sp(f∗(E)), f∗(∇)Sp(f∗(E))(f∗(φ)) = 
f∗(∇) ◦ f∗(φ) - (f∗(φ) ⊗1f∗(Ω)) ◦ f∗(∇) where f∗(φ) ∈	Sp(f∗(E)), φ 
∈ Sp(E) and f : X →Y a continuous map.  The symplectic 
Yang-Mills field (f∗(E),f∗(∇)) provides the Yang-Mills field 
(Sp(f∗(E)), f∗(∇)Sp(f∗(E))). Recall that the first prolongation of a 
symplectic AY-connection ∇on a symplectic vector sheaf (E,σ) 
is given by ∇1 : E⊗AYΩ → E⊗AYΩ2. From f: X → Y a 
continuous map and 	∇1, one gets 
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f∗∇1): f∗(E)⊗f∗AYf∗(Ω) → f∗(E)⊗f∗AYf∗(Ω2) the first 
prolongation of f∗(∇). 
 
Definition 3.4 Let f : X →Y be a continuous map two 
topological spaces, E ≡ (E,π,Y) a locally free AY - module on 
Y endowed with a symplectic AY - form σ and ∇an AY -
connection on (E,σ), the curvature of the symplectic f∗(AY) - 
connection is defined by R(f∗(∇)) = f∗(∇1) ◦ f∗(∇). 
 
The pull back preserves the curvature in sense of R(f∗(	∇)) = 
f∗(R	(∇)) (see [3], p.235). 
 
Definition 3.5 Given f : X→Y a continuous map, (E,π,Y) a 
symplectic vector sheaf over Y and an AY - connection on E, 
the curvature f∗(AY) - tensor of f∗(∇) is defined by 
 
R|f−1(V)(f∗

V(s), f∗
V(t)) f∗

V(r)  = R(f∗
V(s), f∗

V(t)) f∗
V(r) 

 = f∗(∇)( f∗
V(s)) f∗(∇)( f∗

V(t)) - f∗(∇)( f∗
V(t)) f∗(∇)( f∗

V(s)) - 
f∗(∇)([f∗

V(s), f∗
V(t)]) f∗

V(t) (r),                                                (6) 
 
for any f∗

V(s), f∗
V(t), f∗

V(r) ∈ f∗(E)(f−1(V)),  s, t, r ∈ E(V) and V 
an open subset of Y. 
 
The last relation (6) can be written as 
 
 R|f−1(V)(f∗

V(s), f∗
V(t)) f∗

V(r)  
 
 =(f∗

V(∇)(s)f∗
V(∇)(t)- f∗

V(∇)(t)f∗
V(∇)(s)-[f∗

V(∇)(s),f∗
V(∇)(t)])  

 
f∗

V(r),                                                                                      (7) 
 
for any f∗

V(s), f∗
V(t), f∗

V(r) ∈ f∗(E)(f−1(V)),  s, t, r ∈ E(V) and V 
an open subset of Y. The curvature operator associated with 

the symplectic Yang-Mills field (f∗(E),f∗( )) is defined by 
R|f−1(V)(. , f∗

V(s))f∗
V(t)  = R (f∗

V(s)) f∗
V(t) ∈ Endf∗(AY) 

 

(f∗(E)(f−1(V))),                   (8) 
 
for any f∗

V(s), f∗
V(t), f∗

V(r) ∈ f∗(E)(f−1(V)),  s, t, r ∈ E(V) and V 
an open subset of Y. 
 
Definition 3.6 Let ric be the Ricci curvature AY - tensor of an 
AY -connection 	∇ on E and let f : X → Y be a continuous map 
between topological spaces.The Ricci curvature f∗(AY)-tensor 
on f∗(E), denoted by f∗(ric), is defined by f∗(ric)|f −1(V)(f∗

V(s),  
 
f∗

V(t)) = tr(f∗
V(r) → R(f∗

V(r), f∗
V(s)) f∗

V(t)             (9) 
 
for any f∗

V(s), f∗
V(t), f∗

V(r) ∈ f∗(E)(f−1(V)), s, t, r ∈ E(V) and V 
an open subset of Y. 
 
Definition 3.7 Let sR be the symplectic curvature AY -tensor 
associated with the curvature of a symplectic AY-connection 
on a symplectic vector sheaf E ≡ (E,π,Y) ≡ (E,σ) and let f : 
X→ Y be a continuous map between topological spaces,  
 
f∗(sR) defined by 
 
f∗(sR)|f −1(V)(f∗

V(s), f∗
V(t), f∗

V(r), f∗
V(l)) 

= f∗(σ)(R|f−1(V)(f∗
V(s), f∗

V(t)) f∗
V(r), f∗

V(l)), 
is the symplectic curvature f∗(AY) - tensor relative to the 
f∗(AY) - connection f∗(∇), for any f∗

V(s), f∗
V(t), f∗

V(r), f∗
V(l) ∈ 

f∗(E)(f−1(V)), s, t, r, l ∈ E(V) and V an open subset of Y . 
 

Referring toa local gauge eV ={V;e1, e2, …, e2n} of a 
symplectic vector sheaf E ≡ (E,π,Y) ≡ (E, σ) of rank 2n where 
V is an open subset of Y , the continuous f : X → Y defines 
f∗(eV) = {f−1(V); f∗(e1), f∗(e2), .. , f∗(e2n)} a local gauge of the 
inverse image sheaf f∗(E). 
 
Proposition 3.8 Let E ≡ (E,π,Y) be a vector sheaf over a 
topological space Y and f : X  → Y be a continuous map. If J : 
E  →  E is an AY - complex structure on E then the pull back 
of J is a f∗(AY) - complex structure on f∗(E). 
 
Proof. The pull back of J is the sheaf morphism  
 
f∗(J ) : f∗(E) →  f∗(E) so that 
(f∗(J ))2(f∗

V(s)) = f∗(J)(f∗(J)(f∗
V(s)) 

                         = f∗(J)(f∗
VJ(s)) 

                         = f∗
V(J (J (s)) 

                         = f∗
V(J2(s)) 

                         = f∗
V(−idE(V)(s)) 

                         = - f∗
V(s),                                                  (10) 

 
for any f∗

V(s) ∈ f∗(E)(f−1(V)), s ∈ E(V) and V an open subset of  
Y. Thus f∗(J) is a f∗(AY) - complex structure on f∗(E). 
 
Definition 3.9 Let sRic be the symplectic Ricci operator of E ≡ 
(E,σ) and f: X → Y a continuous map between two topological 
spaces, f∗(sRic), is defined by f∗(sRic)|f−1(V) (f∗

V(s)) = ∑(f∗
V(ei),  

 
f∗(J)f∗

V(ei)) f∗
V(s), i=1,2,…,n,  (11) 

                                                                                               
it is the symplectic Ricci operator of f∗(E), for any f∗

V(s) ∈ 
f∗(E)(f−1(V)), s ∈ E(V), V an open subset of Y and f∗(J ) the 
pull back of the complex structure J of E. 
 
We also define the symplectic Ricci f∗(AY)-tensor on f∗(E) as 
follows : 
 
f∗(sric)|f

−1
(V) (f∗

V(s), f∗
V (t)) = f∗(σ)(sRic(f∗

V(s), f∗
V(t))      (12) 

 
for any f∗

V(s), f∗
V(t) ∈ f∗(E)(f−1(V)), s, t ∈ E(V) and V an open 

subset of Y. 
 
PULL BACK OF SYMPLECTIC LAPLACE -
BELTRAMI OPERATOR 
  
Consider (Y,AY) a ℂ-algebraized space, (AY,∂,Ω) a differential 
triad of Y, a continuous map f : X → Y defines 
(f∗(AY),f∗(∂),f∗(Ω)) a differential triad of X from which we 
derive the mth - prolongation of f∗(∂), denoted by f∗(dm). Since 
the mth - prolongation of dm : Ωm → Ωm+1 of ∂ : AY ≡ Ω0 → Ω1 
is defined by 
 
dm (s ˄ t) = dp+q (s ˄ t) = dp (s) ˄ t + (−1)p s ˄ dq (t)             (13) 
 
for every s ∈ Ωp(V), t ∈ Ωq (V), p, q ∈ IN and V open in Y 
(see for instance [4]), one obtains the pull back of dm,  
 
dm : Ωm → Ωm+1 so that 
f∗(dm)(f∗

V(s) ˄ f∗
V(t)) = f∗(dp+q)( f∗

V(s) ˄ f∗
V(t)) 

= f∗(dp)( f∗
V(s)) ˄ f∗

V(t) + (−1)p f∗
V(s) ˄ f∗(dq)( f∗

V(s)) 
= f∗

V(dp(s)) ˄ f∗
V(t) + (−1)p f∗

V(s) ˄ f∗
V(dq(t))                    (14) 

 
for any f∗

V(s) ∈ f∗(Ωp)(f−1(V)), f∗
V(t) ∈ f∗(Ωq)(f−1(V)) and V 

open in Y. 
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We recall that for a given vector sheaf  E over Y, the mth -
prolongation of the AY - connection  ∇≡∇0 : Ω0(E) → Ω1 (E), 
∇m : Ωm (E) → Ωm+1(E) is defined by 
 
∇m(s ⊗	t) = s ⊗ dm(t) + (−1)m t ⊗∇	(s)																														(15) 
 
for any s ∈ E(V), t ∈ Ωm (V) and V open  in Y (see [4]). 
 
Definition 4.1 Let (E,	∇) be a Yang-Mills field over a 
topological space Y, ∇m : Ωm(E) → Ωm+1(E) the mth -
prolongation of the AY - connection ∇ and f : X → Y a 
continuous map between two topological spaces, the pull back 
of ∇, denoted f∗(∇m), is defined from  by  
 
f∗(∇m) : f∗(Ωm) (f∗ (E)) → f∗(Ωm+1) (f∗(E)), 
f∗(∇m) (f∗

V(s)	⊗ f∗
V(t)) = f∗

V(s) ⊗ f∗
V(dm)( f∗

V(t))+(−1)m f∗
V (t)	

⊗ f∗(∇) (f∗
V(s))              

                                               (16) 
for any f∗

V(s) ∈ f∗(E)(f−1(V)), f∗
V(t) ∈ f∗( Ωm)(f−1(V)), and V 

open in Y . 
 
We can  rewrite (16) as follows: 
 
f∗(∇m) (f∗

V(s)	⊗ f∗
V(t)) = f∗

V(s) ⊗ f∗
V(dm(t))+(−1)m f∗

V(t)	⊗  
f∗(∇ (s))                                                                               (17) 
 
for any f∗

V(s) ∈ f∗(E)(f−1(V)), f∗
V(t) ∈ f∗( Ωm)(f−1(V)), and V 

open in Y . 
 
We recall that on (E,σ) a symplectic vector sheaf over Y, the 
dual differential operator of  ∇, δm+1 : Ωm+1(E) →  Ωm(E) is 
such that 
 
σ∇m(s), t) = σ(s, δm+1(t)),                                                 (18) 
 
for any s ∈ Ωm(E(V)), t ∈ Ωm+1(E(V)), with V open in Y (see 
[5]). 
 
Definition 4.2 Let {(E,	∇),σ} be a symplectic Yang-Mills field 
over a topological space Y, δm+1 the dual differential operator 
of ∇and f : X →  Y a continuous map between two topological 
spaces, f∗(δm+1) : f∗(Ωm+1(E)) →  f∗(Ωm(E)) is such that  
 
f∗(σ)(f∗(∇m)(f∗

V(s), f∗
V(t)) = f∗(σ)(f∗

V(s), f∗(δm+1)(f∗
V(t)))  (19) 

 
is the pull back of  δm+1, for every f∗

V(s) ∈ f∗(Ωm(E))(f−1(V)), 
f∗

V(t) ∈ f∗(Ωm+1(E)) (f−1(V)) and V open in Y . 
 
(19) can be expressed as follows 
 
f∗(σ)(f∗(∇m)(f∗

V(s), f∗
V(t)) = f∗(σ)(f∗

V(s), f∗
V(δm+1(t)),       (20) 

 
f∗

V(σ(∇m(s), t)) = f∗
V(σ(s, δm+1(t)),                                    (21)   

                           
for any f∗

V(s) ∈ f∗(Ωm(E))(f−1(V)), f∗
V(t) ∈ f∗(Ωm+1(E)) and V 

open in Y. 
 
Hence, 
 
 f∗(σ)(f∗(∇m)(f∗

V(s), f∗
V(t)) = f∗

V(σ(s, δm+1(t)).                              
 
From the symplectic Laplace-Beltrami operator correspon-ding 
to a symplectic AY - connection ∇on a symplectic vector sheaf 
(E, σ), 

∆m = δm+1◦ δm                                                                     (22) 
 
(see[4]) and a continuous map f : X → Y between topologi-cal 
spaces, one gets the pull back of ∆m , 
 
f∗(∆m) = f∗(δm+1) ◦ f∗(∇m) + f∗(∇m-1) ◦ f∗(δm)                    (23) 
 
which is the symplectic Laplace-Beltrami operator 
corresponding to the f∗(AY)-connection f∗(∇)	on (f∗(E),f∗(σ)). 
  
It follows that the Laplace-Beltrami operator corresponding to 
the f∗(AY)-connection f∗(∇)Sp(f∗(E)) on  the Yang-mills field 
(Sp(f∗(E)), f∗(∇)Sp(f∗(E))) is given by 
 
f∗(∆m

Sp(f∗(E))) = f∗(δm+1
Sp(f∗(E))) ◦ f∗(∇m

Sp(f∗(E))) + f∗(∇m-1
 Sp(f∗(E))) ◦ 

f∗(δm
 Sp(f∗(E))).                                                                   (25) 

 
In particular for m = 2, one gets 
f∗(∆2

Sp(f∗(E))) = f∗(δ3
Sp(f∗(E))) ◦ f∗(∇2

Sp(f∗(E))) + f∗(∇Sp(f∗(E))) ◦ f∗(δ2
 

Sp(f∗(E)))                                                                       (26) 
which is the pull back for 
 
∆2

Sp(E )= δ3
Sp(E) ◦ ∇2

Sp(E) + ∇Sp(E) ◦ δ
2
Sp(E)  developed in  [5].                                                             

 
Hence, the Yang-Mills equations of (f∗(E),f∗(∇)) are 
 
f∗(∆2

Sp(f∗(E)))(R(f∗(∇))) = 0                                                  (27) 
 
and 
 
f∗(δ2

 Sp(f∗(E))) (R(f∗(∇)))  = 0                                               (28) 
 
where R(f∗(∇)) = f∗(R(∇)) is the pull back of  R(∇). 
 
Conclusion   
 
In this paper, more details and results about the pull back 
symplectic vector sheaf and the pull back symplectic Yang-
Mills field are given. We mainly apply the pull back 
symplectic Laplace-Beltrami operator to define the symplectic 
Yang-Mills equations on the Yang-Mills field (f∗(E),f∗(∇)). 
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