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ABSTRACT  

 

Based on the surface theory, employing complex variable function method, the problem of an isotropic elastic plane containing two circular 
nano-inhomogeneities is studied. The solutions of stress field of any point at the nano- inhomogeneities and plane with interface effects are 
obtained. The surface effects on the stress fields of the whole plane structure are analyzed.  
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INTRODUCTION 
 
With the development of science and technology, the study of the mechanical behavior of inhomogeneous materials containing 
nanosized inclusions or holes has attracted great interest. The existing literatures show that researches with interface/surface 
effects of an inclusion or a hole on mechanical behavior of inhomogeneous medium have achieved some achievements (Wang, 
2007; Ou, 2008; Grekov, 2014; Ou et al., 2009; Tian, 2007; Tian, 2007; Ou, 2015; Mogilevskaya, 2008; Ou, 2015), but the lack of 
studies of surface/interface effects of multiple holes or inclusions on inhomogeneous media. Gong and Meguid, (1993) use the 
complex variable function method to analyze the interacting circular inhomogeneities in plane elastostatics without the surface 
stress. Based on the displacement Gurtin and Murdoch models, Mogilevskaya and Crouch (2008), the boundary integral method 
are used to analyze the two dimensional problems with multiple nanosized circular holes. The purpose of the paper is to analyze 
the effects of surface on the infinite plane containing two circular nano-inhomogeneities subjected to stress and shear stress at 
infinity. Based on the surface theory, complex variable function method is used here to solve the deformation field. 
 
Mathematical Formulations  
 
Consider an isotropic elastic plane M containing two circular nano-inhomogeneities O1 

and O2 
as   shown in Fig. 1. It is subjected 

to stress and shear stress at infinity of the plane. With the complex variable method, the stress and the displacement can be 

expressed in terms of two analytic functions )(z  and )(z  as follows 
 

)()()()(2 zzzzkiuu yx  
          

(1) 
 

 )()(2 zzyyxx  
                  

(2) 
 

 )()(22 zzzi xyxxyy  
          

(3)                       
 

where iju
 
and ij

 
are displacement and stress tensor, respectively; 43 k

 for plane strain and 
)1/()3(  k

 
for  

plane stress; µ
 
and ʋ are the shear modulus and Poisson’s ratio, respectively; 

iaeiyxz 
. Airy’s stress function U can be 

related to the above two functions by 
 

 )()(Re zzzU  
, 

)()( zz  
           

(4)                     
 

*Corresponding author: Wen Shuangshuang , 
School of Science, Lanzhou University of Technology, Lanzhou 730050, P. R. China. 

Available online at  
http://www.ijisr.com 

 

International Journal of Innovation Sciences and Research 
 

Vol.6, No, 02, pp. 963-971, February 2017 
 



 
 

Fig. 1. Elastic plane containing two circular nano-inhomogeneities 
 

The components of stress and displacement in terms of polar coordinates are 
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Equations (6) and (7) can be expressed in the following complex variable form 
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In the bulk, the constitutive equations are 
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coordinate, the Young-Laplace equations are 
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where superscripts B  and S  are used to denote the quantities corresponding to bulk and interface between matrix and 

inhomogeneity;   and 


 are the Lame constants; n  is the normal vector on the interface; 
0  is the residual surface stress under 

unstrained conditions; ij
 is the Kronecker delta; 

      IM *** 
 
denotes the jump across the matrix-inhomogeneity 

interface; i , 
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, 2 . 
 
Assume that the inhomogeneities are perfectly bonded to the matrix. Then the displacements are continuous at the interface 
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where the last term is the displacement induced by the prescribed uniform dilatational  eigenstrain 
 , i.e., 
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From equations (10) and (11), we have 
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For plane problems, the quantities with respect to t  are 0. Thus equation (15) is automatically satisfied. Equations (16) and (17) 
can be expressed 
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The left-hand side of equation (18) can be written in terms of potential functions by using equation (8). For the right-hand side, the 

surface stress 
s


 
by using equation (12) can be written as 
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When 1,01 aa 
, the elastic strain by using equations (6), (7) and (9) can be obtained from the following equations 
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The strain 
 
is continuous at the interface due to the continuous displacement at the interface. Thus in the following derivation, 

the strain is calculated from the matrix. Note that 
0tt

 
for plane strain and 
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for plane stress. 

Because of the discontinuity of tt
 
at the interface, the mean strain is used 
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where 
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can be obtained by using equation (20). 

 

Since no singularities are assumed to reside inside or on the boundary of the inhomogeneity, 
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can be expanded 

into Laurent series as follows 
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However, if there are one inhomogeneity in the matrix M  (Tianet al., 2007), 
)(z

 
and 

)(z
 
can be expanded into Laurent 

series as follows 
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     When there are two inhomogeneity in the matrix M , the Airy’s stress function can be expanded by [Gong et al.,1993] as 
follows 
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where 0U
 
is the stress function corresponding to the uniform stress state at infinity in the absence of the inhomogeneity and the 

stress function kU
 
is contains singularities inside the k-th inhomogeneity. So 0U

 
can be expanded as 
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In the view of equations (2), (3), (26) and England (1971), we have 
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Substituting equations (28), (29), (30) into equation (27),   it can be reduced to the same form as equation (4), 
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Substituting equations (5), (14), (25), (31) into equation (13), which are the displacement of the inclusion 1O
, it is expressed as 

follows 
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As to the same the coefficients of 
nz1  ,we can obtain the following equations 
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Similarly, we can obtain the coefficients of 
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by substituting equations (5), (34), (35) into equation (32), which are the 
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In the inhomogeneity 1O
, the stresses are  

 
 

)2cos(2 11,11,1  LHrr 
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Numerical Results and Discussions 
 

Based on the above method, the elastic field around the circular inclusions is obtained by numerical simulation. In what follows, 
we set 

GPa7.34M , 
3.0MV

, GPa52M , 3.0 ,  GPa3.17I , GPa26I , 3.0I V , 5.3s , 
6s

, 6.8sK , 

9.6s , 
5.0s

, 8.5sK , N/m1.00  . 
 

 
 

Fig. 2 The variation of normal hoop stress along 
1  

( 0,1000 1212  d )
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Fig. 2 shows the variation of the normal hoop stress along the 1 . When the 12d
 
tends to infinity and only a circular inclusion 

effecting on normal stress, there is the same trend of the two curves. Comparing to the Fig. 3 in literature (Tian et al., 2007) [6], it 
verifies that the result of this paper is the correctness.  
 

 
 

Fig. 3. The variation of normal hoop stress along
1  

( 0,5.0 1212  d )
 

 

Fig. 3 shows the variation of the normal hoop stress along the 1 . Comparing to the Fig. 2, the effect of the inclusion on the 

normal hoop stress is greater when there are two circular inclusions and the value 12d
 
is 0.5. 

 

 
 

Fig. 4 The variation of normal hoop stress along 
12  

Fig. 4 shows the effect of 12
 
on the normal hoop stress. And the variation of the normal hoop stress along the 12

 
is similar to 

those along the 1 , but the influence is different  
 

 
 

Fig. 5 The variation of normal hoop stress along 
12d  
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The influences of the distance 12d
 between the two circular inclusions on the normal hoop stress are shown in Fig. 5. The stress 

decreases sharply with the increase of 12d
, and the 12d

 has almost no effect on the normal hoop stress when the values of 12d
 

are greater than 2. 
 

 
 

Fig. 6 The variation of normal hoop stress along 1a  

 

Fig. 6 shows the variation of normal hoop stress along the 1a
. From Fig. 6, the influence of the radius 1a

 
on the normal hoop 

stress decreases with the increase of 1a
, and it has little effect when it is greater than 2. 

 
Summary and Conclusion 
 
The influence of the interface effect on the stress field of the composites is demonstrated, which can be helpful for the study of 
other nanocomposites. It is found that the surface elasticity theory illuminates some interesting characteristics of mechanic at the 
nanoscale. 
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