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ABSTRACT  

 

 

In this article we treat differential form triads over the fixed topological space X. Through the Lie group we construct the Lie algebra. We 
suggest a physic application in thePoisson Static manifold overX. 
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INTRODUCTION 
 

 
 

Definition 1.1   Let us consider the following triplet: 
 
(����, ����� ,����� )                                                                                                                     ………………………………..[1.1]  
 
such that, for any	��� ∈	Ob(����)  ,  there exist ��� ∈ ����� and Ω�� ∈	Ob(�����) satisfying, for any open U in X, the Leibniz 
(product) rule 
 

���(��. �′�) = ��. ���(�′�) + �′� . ���(��),                                                                                         ………………………………... [1.2] 
 
with ��, �′� 	ϵ		���≡��(U) where ���: ��� ≡ ��(�) → Ω�� ≡ Ω�(U), is continuous and	��-linear. We set	��� as a differential 
triad over ( X,	��). 
 
���  = (�� ,   ��  ,Ω�)                                                                                                                     …………………………………..[1.3]  
 

If ��
�: ���� → �����	is a functor defined, for any ���,	��� ∈ Ob(����)	and ℎ��

��
∈ ���

��
as follows :      

 

 ��
�⃒���

: =��� , ��
�⃒

���

�� : =��
��

 ,                                                                                                    ………………………………….[1.4] 

 

where ���

��
 = �������

(��� , ���) and, ��
��

:���

��
→ �Ω�

��
is a continuous map with �Ω�

��
= ��������

(Ω�� , Ω��). The symbol “ │” 

designs the restriction, and in this case the triplets: 
 

(���,���	, Ω�� ) ,   ( ���

��
 , ��

��
 ,�Ω�

��
)                                                                                            ……………………………………[1.5] 

 

are differential triads in Ob ( ���� × ��
� × ����� ) and Mor ( ���� × ��

� × ����� ), respectively; i.e., which satisfy [2.2]. The 
functor ��

� : ���� → ����� satisfying [2.4] is a differential triad functor over X.  Note that the Ω�� are sheaves of (differential) 

�� -modules over X, the  ��� are sheaves of unital  �-algebras over X, ��� and ��
��

 are derivative maps as the �� -sheaf 
morphisms which are also ��-linears, where �� = (ℝ� or ℂ�) .  
  

����  = (���   ,   ���  ,  Ω��),���
��

=( ���

��
 , ��

��
 ,�Ω�

��
)                                                                    ……………………………………. [1.6] 
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Definition 1.2   Let ���� and ���� be two differential triads over X .The morphism of differential triads between ���� and ����(or 

simply from ����  to ����  ) is the triplet 

 

(ℎ��

��
,  ��

��
, ℎΩ�

��
),                                                                           ………………………………..[1.7] 

  

where   ℎ��

��
ϵ	���

��
) and ℎΩ�

��
ϵ	�Ω�

��
are continuous maps and ��

��
 satisfies, for any open U in X, the relation:  

 

��
��

�ℎ��

��
�= ℎΩ�

��
)                                                                                                     ……………………………. [1.8] 

 
and the Leibniz (product) rule: 
 

  ��
��

(ℎ��

��
. ℎ��

���
) = ℎ��

��
. ��

��
�ℎ��

���
� + ℎ��

���
. ��

��
(ℎ��

��
),                                                                     ………………………………….[1.9] 

 

with    ℎ��

��
, ℎ��

���
ϵ	��

��
(U) ≡���

��
. The map   ��

��
∶ 	���

��
→ �Ω�

��
is continuous. 

 
We observe that, for any U ⊆	X we have:                              
 

ℎΩ�

��
(��	. ��)	= ℎ��

�� (��). ℎΩ�

�� (��),                                                                                                     ………………………………..[1.10] 

 
where					(��	,��	)	�	��� × Ω��. 
 
We denote the morphism of differential triads (or simply a differential triad morphism): 
 

 ���� and ����  by :   ����
�� = (ℎ��

��
, ��

��
, ℎΩ�

��
)                                                                                ………………………………[1.11] 

 
So that: 

��
��

(ℎ��

��
)⃒��

= (ℎΩ�

��
◦	���) (��) = (���◦	ℎ��

��
)(��),                                                                                 …………………………….[1.12] 

 
for any  ��ϵ���, where the symbol “ │” designs the restriction. 
 

Theorem 1.3 The composition of morphism of differential triads is associative. 
 
Proof. It is proved in [14]. 
 

Definition 1.4  The differential triads dT�� and their morphisms  md��
��

; i,j = 1,2,3,… form the category, denoted  ������	and 
called the category of differential triads over X. 
 
Note that we can also generalize the same notions to the category ����� and construct the category of differential triads 
over	�����  or TOP denoted, respectively by: 
 
�����	�����

,  ��������	≡ DiffT, with ������	 ⊆ �����	�����
⊆DiffT. 

 
2. Differential Form Triads 
 
Definition 2.1 
 

Now consider, for any x �	X, the tangent space ��X. Hence, we define the sheaf  
 

TX :=⋃ ���	�	∈	� ≡ ∑ ����	∈	�                                                                                                          …………………………………[2.1] 
 

as the tangent bundle sheaf. Referring to the Classical Differential Geometry, in short CDG, it follows that if X is a smooth 
manifold of dimension n and TX is a smooth manifold of dimension 2n. 
 

Remark 2.2 
 

Consider the morphism  f : X →  Y, where X , Y  are  two smooth manifolds of class ��, (k	≥	2). 
 

We set: 
 
�� = T(X) ≡ TX,   �� = T(Y) ≡ TY                                                                                                 ………………………………[2.2] 
 
Then , the derivative function f’ of  f , is such that  f’	≡ �f	≡ �� ∈ ��(��	, ��). 
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Definitions 2.3 
 
Let  (T�, �, TX)  and (TΩ, �,	TX ) be two sheaves of smooth manifolds. If we consider the map Td: T�→T Ω, it follows that 
 
Td ◦	�  =  �  , ����(��(��))  ⊆ 	�Ω(��)                                                                              …………………………………..[2.3] 
 
We observe that  (T��, ��� , TΩ� ) is the tangent bundle differential triad over (��, ��).  
 
Definitions 2.4 
 
Let us associate  to T the funtorial character morphism  and we set T(��, �� , Ω� ) = (T�� , ��� , TΩ� ) ≡ (��� , ��� , Ω��). 
 
In this case, T is the tangent bundle  functorial  morphism  and  one could write: 
 
T(���) ≡ ����: = (���,  ��� , Ω��)                                                             …………………………………[2.4] 
 
We can also call it as the tangent bundle differential triad over  (��, TX ).  
 
Remark 2.5 
 
We observe that if f : X  → Y is a morphism of topological space, then we obtain the following commutative diagram (Figure 1) 
 

           T(���)											 
 

T(�iX)   			→ T(ΩiX) 

       �(��
��

)								 

�(ℎ��

��
) ↓     → ↓T(ℎΩ�

��
) 

     T(���)						 

T(�jY)     → T(ΩjY) 
 

Figure 1. Morphisms of differential tangent bundle triads 
 
Note that by convenience, we set  
 

T(���) = ����  ,   �(��
��

) = ���
��

≡ 	 ���

��
,  T(���) = ����.                                                             …………………………………[2.5] 

 
Definition 2.6 
 
Consider the map s: X   → TX,  x → ��� which satisfies the relation 
 
��◦ s = ���,                                                                                               ……………………………….[2.6] 
 
where �� : TX		→   X is a projection morphism. Then, we observe that s is the vector field on X. 
 
If f : X  → Y is a morphism of topological space  and �̅ : Y  → TY is a vector field on Y, it follows that we have : 

 
�� = �̅◦ f ◦	���                                                                                ………………………………[2.7] 

 
where  ��:�� → �� is a morphism of tangent bundles.  

   
The set of vector fields of X will be denoted by �(X) and consequently the sets of vector fields of   and  Ω shall be denoted by 
�(�)  and  �(Ω),  respectively. 
 
Remark 2.7 
 
���	s	∈ 	�(X) and associate to  s  a transformation   φ : � × X →	X , (λ , x) →	φ(λ , x) such that: 
 
��

��
  = s                                                                                                                                           …………………………………..[2.8] 

 
where  �	�	�	is	a	parameter.	It follows that for any  �	, �	�	� we have the relation 
 
��◦ �� = ����,                                                                                                 ……………………………..[2.9] 
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with  �� : X → X, x → ��(x) = φ(λ , x)  and  �� : X  →  X, x  → ��(x) = φ(t , x). 
 
Definitions2.8 
 
Let E  and F  be free	� −modules on X. We denotes by  ℒ��

� (E ,) ≡ �����
� (E ,) ≡ ⋀�(E) ≡ 	 Ω�(E). 

 
The sheaf of exterior product form (or of differential � −forms) as a � −algebra structure sheaf. Note that we set: 
 
ℒ��

� (E , �) (X) =  ℒ��(�)
� (E(X) , �(X)) ,     (ℒ��

� (�	, �))	� = 	 ℒ���

� (�� , ��)                                               …………………[2.10] 

 
and, for any x є U	⊆	X, we have:  
 
(ℒ��

� (�	, �))	� = 	 ���
�є��⃖�������

(ℒ��
� (�	, �))	�                                                                                                               ………………[2.11] 

 
Definition 2.9 
 

Let Ω� be the sheaf of exterior product forms of degree p (or of differential � −forms) as a � −algebra structure sheaf and 
consider the morphism  ��

X :	Ω�
X	→ Ω���

X . The triplet 
 

(Ω�
X ,	��

X ,  Ω���
X)                                                                                                                                         …………………...[2.12] 

 

is a  triad of differential � −forms  relative to (X , �X ) iff: 
 

Ω�
X =	��, if   p=0                                                                                                                                          ……………………...[2.13] 

 

and, for any open U in X, the Leibniz (product) rule 
    
��

�(�. �′) = �. ��
�(�′) + �′. ��

�(�)                                                                                                         ………………….[2.14] 
 

is satisfied , with w, �′ ϵ		Ω�
� and		��

�	:	Ω
�

� → Ω���
� is a continuous map. We set: d��

�: = (Ω�
� , ��

� ,  Ω���
�) 

 

Definition 2.10 
 

Let �� = ��
� be the structure sheaf of germs of local ℝ (or ℂ)-valued Ck-functions on X, and Ω�= Ω�

�as the sheaf of germs of its 
smooth ℝ (or ℂ)-valued 1-forms  then , we obtain  
   

d��
� := (��

�  , ��, 	Ω�
� )                                                                                                                                …………………[2.15] 

  
and say that [2.15] is a differential triad of smooth manifolds on  X (or simply a manifold differential triad of  X). Thus, the 
concept of a differential triad generalizes that of a manifold.  
 
If we specify the order of differential forms of Ω (�-sheaf of differential-modules) by setting  
 
Ω�≡ (Ω�)�= ⋀Ω� , with 	∧	≡	∧� ,  i = 1,2,3,…                                                                                              …………………….[2.16] 
 
With  Ω� : =  ,   Ω�:= �∧ Ω ,    Ω� ∶= 	� ∧ Ω� ∧ Ω�, …; where ∧ is the skew symmetric homological tensor product (see[12]) - 
[14]). 
 

���
� ≡ ��, ��

� ≡ ��, ��
� ≡ ��, ��

� ≡ ��, ��
� ≡ �� 

 
0  → ℂ� → �� → Ω�							→ 					Ω�

� 	 → …	→ 	Ω�
� → 					 Ω���

� →…, is co-homologically exact , i.e., we have : 
 
ker		Ω���

�  = Im Ω�
�,    ����◦ �� ≡  d ◦ d = 0 , p = 0,1,2,… 

 
3.Lie Algebra Triads 
 
Definitions 3.1 
 
Let  X  be a fixed smooth manifold.  A Lie group sheaf  over  X  is define as a  sheaf of smooth manifolds endowed with a group 
sheaf structure, such that the map  �� : �� × �� → �� is  differentiable and , for any (g , g’) �	�� × �� with U	⊆ X, we have: 
 
��(g, g’)= g.�’��                                                                                                                             …………………………………..[3.1] 
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Definitions 3.2 
 
The Lie algebra sheaf  ₢₢�	of the Lie group �� is defined as a vector sheaf  isomorphic to a tangent space sheaf  ����, with e 
�	��; in other words,    
 
Dim ₢₢� = dim���� = dim ��                                                                                                                      ……………………..[3.2] 
 
If the family (Bi) ,with i = 1,2,…,is a basis of  ₢, then the Lie bracket of  two elements  Bi, Bj of this basis is defined as follows: 
 

[Bi  ,Bj] = ���
�Bk,                                                                                                                                              ……………………[3.3] 

 

where ���
�  is called the constant structures in ₢₢�. Note that if M�(��) is the sheaf of square matrices of n-order, with elements in 

��, then the sheaf  
 

Gl(n , ��) = ��	�	��(��)/ ��� �	 ≡ ����� 	 ≠ 0�                                                                                        ……………………….[3.4] 

 
is a Lie group sheaf, where det A designs the determinant of �	�	��(��). 
 
Let dT = (��, d�,Ω�) be a differential triad. We define the matrix differential triad (see[12]) by setting 
 
���

� = (Gl(n , ��) ,��
�,  ��(Ω�))   ,                                                                                                           ……………………..[3.5] 

 
where  ��

�:Gl(n , ��) → ��(Ω�)  satisfies for any A , B ϵ Gl(n , ��) the Leibniz (product) rule 
 
��

�(A.B) = �� (B-1) .��
� (A) +	�� (B)                                                                                                           ………………………..[3.6] 

 
with A ≡ (���), B ≡ (���),  U	⊆ X and i, j, k, l = 1, 2,…, n. Note that  �� (B-1)  designs the adjoint matrix of B-1 and 

 
��

�(A) = ���. ad (A) ,  ��
�(���) = −�� (B) . �� (B)                                                                                    ……………………….[3.7] 

 
as above 
 
[��(A) ,��

�(B) ] = A .��
�(B) .���                                                                                                                   ………………………[3.8] 

 
Where  ad�: Gl(n , ��) →  End(Gl(n , ��)) is the adjoint representation. 
 
Remark 3.3 
 
Here  ��

� is the matrix differential (or derivative) over X. The matrix notation is justified through the relation  
 

����(��)	�	, ��)	�) = ��(��)) and Gl(n , ��)) = ��(��)	̇ )                                                        ……………………………..[3.9] 
 

within �-isomorphisms, where �̇ designs the sheaf of invertible elements of �. Note that ��(��)	̇  and Gl(n , ��) are Lie group 
sheaves. Their Lie algebras are denoted respectively by 
 
��(��))     and       ₢Ɩ(n ,��)) 
 
Definition 3.4 
 
Consider  the following morphism : 
 

[,]: �(X) × �(�) 			 → �(X) ,   ( s, r )       →	[s , r ] = sr	– rs                                                             [3. 10] 
 
which satisfies  the following properties : 
 

(i)    [s , r ]    =  −  [r ,  s] ,  anti – symmetry 
(ii) [s , [r , t ] ] +  [s , [r , t ] ] +  [s , [r , t ]]= 0 , Jacobi identity. 

 
We observe  that [ , ] is a Lie bracket and ( �(�) 	 + , ∙ , [ , ] ) is a Lie algebra of vector fields of X .  
 
Consequently, the sets (( �(�) , + , ∙ , [ , ]) and (( �(X) (Ω), + , ∙ , [ , ]) are Lie algebras of vector fields  of � and Ω, respectively 
and we set:  
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( � (��,�� , Ω� ) ≡	(( � (��) , �� , ( � (Ω�)) ≡ (�(�(�), �(�(�) , Ω(�(�)), 

 
and  
 
�	(dT) ≡ ���(�) = (��(�)	,��(�) ,	Ω�(�))                                                                                               …………………………..[3. 11] 

 
is a Lie algebra differential triad over (� ,	�(X)). 
 
Definitions 3.5 
 
The infinitesimal generators of the Lie algebra ₢Ɩ(n, ��) of the Lie group Gl (n, ��) is defined, for any open U in X by : 
 

��,� = 
�(�,��)�

���� ∙
�

���  =   ��
�

∙
�

���                                                                                                             …………………………...[3.12] 

 
where g, g’ ϵ	��	(�, �)(�) and �, � = 1,…,n .We define the Kirillov form of the Lie algebra ₢Ɩ(n, ��)) of the Lie group Gl (n, 
��))	as follows: 
 

�������(�) = −�����
�                                                                                                                               …………………………...[3.13] 

 

where the ���
�  are the constant structures and the �� are the coefficients of an element � of the dual ₢Ɩ	∗(�, ��)  = ����  (₢Ɩ (n, 

��), ��) of the Lie algebra ₢Ɩ (n, ��). 
 
Remark 3.6 
 
Note that the Kirillov  form is skew-symmetric and it is  said to be closed iff  we have : 
 
���������(�)� = 0                                                                                                                             ………………………………[3.14] 

 
or more explicitly, 
 
�(�������(�))	

����
= 

�(�	�����
� )

����
 =	−���

�  

 
Which implies that : 
 

���
�  = −

�(�������(�))	

����
                                                                                                                    …………………………………..[3.15] 

 
Definitions 3.7 
 
The Poisson bracket is defined through the Kirillov form ,for any open U in X and ℰ, ℱϵ	��(₢Ɩ	∗(�, ��), 	��) as follows : 
 

{ℰ, ℱ} = �������( 
�ℰ

����
	 ∙ 	

�ℱ

����
)	≡ 	 �������

�ℰ

����
	 ∙ 	

�ℱ

����
                                                             ………………………………… [3.16] 

 

where  ���
�∗

 = (��∗(n , ��) , ��
�∗

 , ��
∗(Ω�))                                                                           ………………………………….[3.17] 

 
represents the dual differential triad of ���

� = (Gl(n , ��) ,��
�,  ��(Ω�)) and consequently  

 

���
�∗

 = (₢ l₢Ɩ∗(n ,��) , ��
�∗

 , ��
∗(Ω�))                                                                                     …………………………………[3.18] 

 
is the dual differential triad of 	���

� = (₢Ɩ ₢ l(n , ��) ,��
�,  ��(Ω�)). 

 

The derivative of coadjoint action of a group triad on  ���
�∗

 designed by ���
∗ , allows us to define the Kirillov form on ���

�∗
 as 

follows : 
 
〈���,�

∗ (�), Ύ〉	= 〈	�,[ζ ,Ύ]〉	=		�������(�)ζ	�Ύ�	,	and	〈��ℰ,�
∗ (℮), ℵ〉	= 〈	℮	,[	ℰ ,	ℵ]〉	=		�������(℮)ℰ�ℵ�.	

 
Remark 3.8 
 
Note that the Poisson bracket is	� −  bilinear, skew-symmetric and verifies the Jacobi identity. 
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4. Illustration 
 
Consider the matrix static group defined as follows: 
 

��� = ��
1 0 �
0 1 �
0 1 1

� ∶ �, �	�	ℝ�
��,                                                                                                                ……………………...[4.1] 

 
Where ℝ�designs the real underlying of the �-algebra sheaf  �. 
 

If we set:    ℎ� = �
1 0 �
0 1 �
0 1 1

� = (t,y) and ℎ′� = �
1 0 �
0 1 �
0 1 1

� = (t’,y’), then we have 

 
ℎ�.ℎ′� = (t,y) . (t’,y’) = (t + t’, y+y’)                                                                                                       ………………………..[4.2] 
 
Let s₢� be the Lie algebra of the group ��� whose infinitesimal generators are T and Y. If we use the tensor notation, we can set 
:	��= (t,y) and   �′� = (t’,y’)  so that one would write: 
 

���,� = 
�(��,���)�

����
� ∙

�

���
�  =   ��

�
∙

�

���
�= �

1 0
0 1

� ���
��

�,                                                                          …………………………[4.3] 

 
(at the neutral e = (t,y) = (0,0) ) ,where  �� = �

��
  and  �� = �

��
 .  

 

It follows that :��
�

�= �
1 0
0 1

� ���
��

�= ���
��

�. Then , we obtain T = �� and Y = �� which forms a basis of the Lie algebra s₢�. 

 
The Lie bracket is : 
 
[T,Y] = 0                                                                                                                                                     ………………………[4.4] 
 
The Kirilov form becomes: 
  

�������(�) =�
0 0
0 0

�,       ��₢Ɩ	∗(2, ℝ�
�)                                                                                                   ……………………….[4.5] 

 
The Poisson bracket is:                           

{ℰ, ℱ} = �������( 
�ℰ

����
	 ∙ 	

�ℱ

����
)= (

�ℰ

���
	 ,

�ℱ

���
 )�

0 0
0 0

� �
�ℰ

���
�ℱ

���

�= 0                                                                 ………………………..[4.6] 

 
Hence, this Poisson bracket provides Poisson structure associated to the Static group. We construct the dual (s₢�

∗	, {	, } ) of s₢� 
endowed with the Poisson bracket which is the Poisson  Static Manifold. 
 

The differential  ��
�∗

: ₢ l₢Ɩ∗(n ,ℝ�
�) → 		 ��

∗(Ω�) will permit us to extend the notion of Poisson  Static Manifold in ��
∗(Ω�). 

 
5. Conclusion and Future Work 
 
The main focuses of our investigation in this article were : 
 

 The differential triads that we present as the basic object through which all fundamental notions are constructed; 
 The construction of the dual ( s₢�

∗	, {	, } ) of s₢� endowed with the Poisson bracket which is the Poisson  Static Manifold, 
through the Lie group and Lie algebra theories. 

 
The future work shall consist to treat the following: 
 

 The Clifford connection triad algebras ; 
 The application of the Clifford connection triad algebras in physic. 
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