RESEARCH ARTICLE

APPLICATION OF CONNECTION TRIADS IN STATIC LIE GROUP AND LIE ALGEBRA

^{*1}Chiteng, B. K., ²Phiri, P. A., ³Kabwita, P.M., ³N'gandwe K. Mumba and ⁴Tossa, J.

¹Department of Mathematics and Informatic, University of Lubumbashi, Lubumbashi, D.R.Congo ²Department of Mathematics, Copperbelt University, Kitwe, Zambia ³Department of Physics, Copperbelt University, Kitwe, Zambia ⁴ Institut de Mathematiques et de Sciences Physiques, Abomey-Calavi, Benin

Accepted 29th May, 2017; Published Online 30th June, 2017

ABSTRACT

In this article we treat differential form triads over the fixed topological space X. Through the Lie group we construct the Lie algebra. We suggest a physic application in the Poisson Static manifold overX.

Key words: Differential triads, Lie group, Lie algebra, Poisson bracket.

INTRODUCTION

Definition 1.1 Let us consider the following triplet:

 $(Alg_x, Diff_x, DMod_x)$[1.1] such that, for any $\mathcal{A}_{iX} \in Ob(Alg_X)$, there exist $d_{iX} \in Diff_X$ and $\Omega_{iX} \in Ob(DMod_X)$ satisfying, for any open U in X, the Leibniz (product) rule $d_{iII}(a_i, a'_i) = a_i d_{iII}(a'_i) + a'_i d_{iII}(a_i),$

with
$$a_i, a'_i \in \mathcal{A}_{iU} \equiv \mathcal{A}_i(U)$$
 where $d_{iU}: \mathcal{A}_{iU} \equiv \mathcal{A}_i(U) \rightarrow \Omega_{iU} \equiv \Omega_i(U)$, is continuous and \mathbb{K}_U -linear. We set dT_X as a differential triad over (X, \mathcal{A}_X) .

$$dT_X = (\mathcal{A}_X, d_X, \Omega_X)$$

If F_X^d : $Alg_X \to DMod_X$ is a functor defined, for any \mathcal{A}_{iX} , $\mathcal{A}_{jX} \in Ob(Alg_X)$ and $h_{\mathcal{A}_X}^{ij} \in H_{\mathcal{A}_X}^{ij}$ as follows:

where $H_{\mathcal{A}_X}^{ij} = Hom_{Alg_X}(\mathcal{A}_{iX}, \mathcal{A}_{jX})$ and, $d_X^{ij}: H_{\mathcal{A}_X}^{ij} \to H_{\Omega_X}^{ij}$ is a continuous map with $H_{\Omega_X}^{ij} = Hom_{DMod_X}(\Omega_{iX}, \Omega_{jX})$. The symbol " \mid " designs the restriction, and in this case the triplets:

are differential triads in Ob ($Alg_X \times F_X^d \times DMod_X$) and Mor ($Alg_X \times F_X^d \times DMod_X$), respectively; i.e., which satisfy [2.2]. The functor F_X^d : $Alg_X \rightarrow DMod_X$ satisfying [2.4] is a differential triad functor over X. Note that the Ω_{iX} are sheaves of (differential) \mathcal{A}_X -modules over X, the \mathcal{A}_{iX} are sheaves of unital \mathbb{K} -algebras over X, d_{iX} and d_X^{ij} are derivative maps as the \mathbb{K}_X -sheaf morphisms which are also \mathbb{K}_X -linears, where $\mathbb{K}_X = (\mathbb{R}_X \text{ or } \mathbb{C}_X)$.

$$dT_{iX} = (\mathcal{A}_{iX}, d_{iX}, \Omega_{iX}), dT_X^{iJ} = (H_{\mathcal{A}_X}^{iJ}, d_X^{iJ}, H_{\Omega_X}^{iJ})$$

Corresponding author: Chiteng, B. K.,

Department of Mathematics and Informatic, University of Lubumbashi, Lubumbashi, D. R. Congo

Definition 1.2 Let dT_{iX} and dT_{jX} be two differential triads over X. The morphism of differential triads between dT_{iX} and dT_{jX} (or simply from dT_{iX} to dT_{jX}) is the triplet

$$(h_{\mathcal{A}_{X}}^{ij}, d_{X}^{ij}, h_{\Omega_{X}}^{ij}),$$
[1.7]

where $h_{\mathcal{A}_X}^{ij} \epsilon H_{\mathcal{A}_X}^{ij}$ and $h_{\Omega_X}^{ij} \epsilon H_{\Omega_X}^{ij}$ are continuous maps and d_X^{ij} satisfies, for any open U in X, the relation:

and the Leibniz (product) rule:

with $h_{\mathcal{A}_U}^{ij}, h_{\mathcal{A}_U}^{ij} \in H_{\mathcal{A}}^{ij}(U) \equiv H_{\mathcal{A}_U}^{ij}$. The map $d_U^{ij}: H_{\mathcal{A}_U}^{ij} \to H_{\Omega_U}^{ij}$ is continuous.

We observe that, for any $U \subseteq X$ we have:

where $(a_i, \omega_i) \in \mathcal{A}_{iU} \times \Omega_{iU}$.

We denote the morphism of differential triads (or simply a differential triad morphism):

$$dT_{iX} and dT_{jX} by: m dT_X^{ij} = (h_{\mathcal{A}_X}^{ij}, d_X^{ij}, h_{\Omega_X}^{ij})$$
[1.11]

So that:

for any $a_i \epsilon A_{iU}$, where the symbol " | " designs the restriction.

Theorem 1.3 The composition of morphism of differential triads is associative.

Proof. It is proved in [14].

Definition 1.4 The differential triads dT_{iX} and their morphisms mdT_X^{ij} ; i,j = 1,2,3,... form the category, denoted Diff T_X and called the category of differential triads over X.

Note that we can also generalize the same notions to the category $Open_X$ and construct the *category of differential triads* over $Open_X$ or TOP denoted, respectively by:

 $DiffT_{Open_X}$, $DiffT_{TOP} \equiv DiffT$, with $DiffT_X \subseteq DiffT_{Open_X} \subseteq DiffT$.

2. Differential Form Triads

Definition 2.1

Now consider, for any $x \in X$, the tangent space $T_x X$. Hence, we define the sheaf

$$TX := \bigcup_{x \in X} T_x X \equiv \sum_{x \in X} T_x X$$

as the *tangent bundle sheaf*. Referring to the Classical Differential Geometry, in short CDG, it follows that if X is a smooth manifold of dimension n and TX is a smooth manifold of dimension 2n.

Remark 2.2

Consider the morphism $f: X \to Y$, where X, Y are two smooth manifolds of class C^k , $(k \ge 2)$.

We set:

$$X^1 = T(X) \equiv TX, \quad Y^1 = T(Y) \equiv TY$$
[2.2]

Then, the *derivative function* f' of f, is such that $f' \equiv Tf \equiv T_f \in C^k(X^1, Y^1)$.

Definitions 2.3

We observe that $(T\mathcal{A}_X, Td_X, T\Omega_X)$ is the tangent bundle differential triad over $(T\mathcal{A}, TX)$.

Definitions 2.4

Let us associate to *T* the funtorial character morphism and we set $T(\mathcal{A}_X, d_X, \Omega_X) = (T\mathcal{A}_X, T\mathcal{\Omega}_X, T\mathcal{\Omega}_X) \equiv (\mathcal{A}_{TX}, \mathcal{\Omega}_{TX})$. In this case, *T* is the *tangent bundle functorial morphism* and one could write:

$$T(dT_X) \equiv dT_{TX} = (\mathcal{A}_{TX}, \ d_{TX}, \ \Omega_{TX})$$

We can also call it as the *tangent bundle differential triad* over $(T\mathcal{A}, TX)$.

Remark 2.5

We observe that if $f: X \to Y$ is a morphism of topological space, then we obtain the following commutative diagram (Figure 1)

$$T(d_{iX}) \rightarrow T(\Omega_{iX})$$

$$T(\mathcal{A}_{iX}) \rightarrow T(\Omega_{iX})$$

$$T(d_{f}^{ij})$$

$$T(h_{\mathcal{A}_{f}}^{ij}) \downarrow \rightarrow \downarrow T(h_{\Omega_{f}}^{ij})$$

$$T(d_{jY})$$

$$T(\mathcal{A}_{jY}) \rightarrow T(\Omega_{jY})$$

Figure 1. Morphisms of differential tangent bundle triads

Note that by convenience, we set

$$T(d_{iX}) = d_{iTX} , \quad T(d_f^{ij}) = d_{Tf}^{ij} \equiv d_{Tf}^{ij}, \quad T(d_{jY}) = d_{jTY}.$$

$$(2.5]$$

Definition 2.6

Consider the map s: $X \rightarrow TX$, $x \rightarrow T_x X$ which satisfies the relation

where $p_1: TX \rightarrow X$ is a projection morphism. Then, we observe that s is the vector field on X.

If $f: X \to Y$ is a morphism of topological space and $\overline{s}: Y \to TY$ is a vector field on Y, it follows that we have :

$$T_f = \bar{s} \circ f \circ s^{-1}$$
[2.7]

where $T_f:TX \to TY$ is a morphism of tangent bundles.

The set of *vector fields of X* will be denoted by $\Xi(X)$ and consequently the sets of *vector fields* of and Ω shall be denoted by $\Xi(A)$ and $\Xi(\Omega)$, respectively.

Remark 2.7

Let $s \in \Xi(X)$ and associate to s a transformation $\varphi : \mathcal{A} \times X \to X$, $(\lambda, x) \to \varphi(\lambda, x)$ such that:

$\frac{d\varphi}{d\phi} = s$	[2.8]
dλ	[2.0]

where $\lambda \in \mathcal{A}$ is a parameter. It follows that for any λ , $t \in \mathcal{A}$ we have the relation

$arphi_{\lambda}\circ arphi_t = arphi_{\lambda+t}$,	[2.9]

with $\varphi_{\lambda}: X \to X, x \to \varphi_{\lambda}(x) = \varphi(\lambda, x)$ and $\varphi_t: X \to X, x \to \varphi_t(x) = \varphi(t, x)$.

Definitions2.8

Let *E* and *F* be free \mathcal{A} -modules on *X*. We denotes by $\mathcal{L}_{p\mathcal{A}}^{e}(E_{j}) \equiv Hom_{p\mathcal{A}}^{e}(E_{j}) \equiv \Lambda^{p}(E) \equiv \Omega^{p}(E)$.

The sheaf of exterior product form (or of differential p –forms) as a \mathbb{K} –algebra structure sheaf. Note that we set:

and, for any $x \in U \subseteq X$, we have:

$$\left(\mathcal{L}_{p\mathcal{A}}^{e}(E,\mathcal{A})\right)_{x} = \lim_{x \in U} \left(\mathcal{L}_{p\mathcal{A}}^{e}(E,\mathcal{A})\right)_{U}$$
(2.11]

Definition 2.9

Let Ω^p be the sheaf of exterior product forms of degree p (or of differential p-forms) as a \mathbb{K} -algebra structure sheaf and consider the morphism $d^p{}_X: \Omega^p{}_X \to \Omega^{p+1}{}_X$. The triplet

$$(\Omega^{p}_{X}, d^{p}_{X}, \Omega^{p+1}_{X})$$
[2.12]

is a triad of differential p -forms relative to (X, \mathcal{A}_X) iff:

and, for any open U in X, the Leibniz (product) rule

is satisfied, with w, $w' \in \Omega^p_U$ and $d^p_U : \Omega^p_U \to \Omega^{p+1}_U$ is a continuous map. We set: $dT^p_X := (\Omega^p_X, d^p_X, \Omega^{p+1}_X)$

Definition 2.10

Let $\mathcal{A}_X = \mathcal{C}_X^{\infty}$ be the structure sheaf of germs of local \mathbb{R} (or \mathbb{C})-valued C^k-functions on *X*, and $\Omega_X = \Omega_X^{-1}$ as the sheaf of germs of its smooth \mathbb{R} (or \mathbb{C})-valued 1-forms then , we obtain

$$dT^{\infty}_{X} := (C^{\infty}_{X}, d_{X}, \Omega^{1}_{X})$$
[2.15]

and say that [2.15] is a differential triad of smooth manifolds on X (or simply a manifold differential triad of X). Thus, the concept of a differential triad generalizes that of a manifold.

If we specify the order of differential forms of Ω (*A*-sheaf of differential-modules) by setting

$$\Omega^{i} \equiv (\Omega^{1})^{i} = \Lambda \Omega^{1}, \text{ with } \Lambda \equiv \Lambda_{\mathcal{A}}, i = 1, 2, 3, \dots$$

$$(2.16)$$

With $\Omega^0 := , \quad \Omega^1 := \mathcal{A} \land \Omega , \quad \Omega^2 := \mathcal{A} \land \Omega^1 \land \Omega^1, \dots$; where \land is the skew symmetric homological tensor product (see[12]) - [14]).

$$d^{-1}{}_{X} \equiv \varepsilon_{X}, \qquad d^{0}{}_{X} \equiv \partial_{X}, \qquad d^{1}{}_{X} \equiv d_{X}, \qquad d^{2}{}_{X} \equiv d_{X}, \qquad d^{p}{}_{X} \equiv d_{X}$$

 $0 \to \mathbb{C}_X \to \mathcal{A}_X \to \Omega_X \to \Omega^2_X \to \dots \to \Omega^p_X \to \Omega^{p+1}_X \to \dots$, is co-homologically exact, i.e., we have :

 $ker \ \Omega^{p+1}{}_X = Im \ \Omega^p{}_X, \quad d^{p+1}{}_\circ \ d^p \equiv \ d \circ d = 0 \ , \qquad p = 0, 1, 2, \dots$

3.Lie Algebra Triads

Definitions 3.1

Let X be a fixed smooth manifold. A *Lie group sheaf* over X is define as a sheaf of smooth manifolds endowed with a group sheaf structure, such that the map $\varphi_X : G_X \times G_X \to G_X$ is differentiable and , for any $(g, g') \in G_U \times G_U$ with $U \subseteq X$, we have:

$$\varphi_U(g, g') = g g'^{-1}$$

.....[3.1]

Definitions 3.2

The Lie algebra sheaf $G \mathfrak{E}_X$ of the Lie group G_X is defined as a vector sheaf isomorphic to a tangent space sheaf $T_e G_X$, with e ϵG_X ; in other words,

$$Dim \, \mathfrak{G}\mathfrak{G}_X = dim \, T_e \, G_X = dim \, G_X \tag{3.2}$$

If the family (B_i) , with $i = 1, 2, \dots$ is a basis of \mathfrak{S} , then the Lie bracket of two elements B_i , B_i of this basis is defined as follows:

$$[B_i, B_j] = C_{ij}^k B_k,$$
 [3.3]

where C_{ij}^k is called the *constant structures in* \mathbb{GG}_X . Note that if $M_n(\mathcal{A}_X)$ is the sheaf of square matrices of *n*-order, with elements in \mathcal{A}_X , then the sheaf

is a Lie group sheaf, where det A designs the determinant of $A \in M_n(\mathcal{A}_X)$.

Let $dT = (\mathcal{A}_X, \mathbf{d}_X, \Omega_X)$ be a differential triad. We define the *matrix differential triad* (see[12]) by setting

$dT_X^M = (Gl(n, \mathcal{A}_X), d_X^M, M_n(\Omega_X))$,	[3.5]
---	-------

where $d_X^M:Gl(n, \mathcal{A}_X) \to M_n(\Omega_X)$ satisfies for any A, $B \in Gl(n, \mathcal{A}_U)$ the Leibniz (product) rule

$$d_{U}^{M}(A,B) = ad (B^{-1}) \cdot d_{U}^{M}(A) + d^{M}(B)$$
.....[3.6]

with $A \equiv (a_{i,i}), B \equiv (B_{kl}), U \subseteq X$ and *i*, *j*, *k*, l = 1, 2, ..., n. Note that $ad(B^{-1})$ designs the *adjoint matrix* of B^{-1} and

$$d_U^M(A) = A^{-1}. ad(A), \ d_U^M(B^{-1}) = -ad(B). \ d^M(B)$$
[3.7]

as above

$$[ad(A), d_U^M(B)] = A \cdot d_U^M(B) \cdot A^{-1}$$
......[3.8]

Where $\operatorname{ad}_X : \operatorname{Gl}(n, \mathcal{A}_X) \to \operatorname{End}(\operatorname{Gl}(n, \mathcal{A}_X))$ is the adjoint representation.

Remark 3.3

Here d_x^M is the matrix differential (or derivative) over X. The matrix notation is justified through the relation

$$Hom_{\mathcal{A}}(\mathcal{A}_{X})^{n}, \mathcal{A}_{X})^{n} = M_{n}(\mathcal{A}_{X}) and Gl(n, \mathcal{A}_{X}) and Gl(n, \mathcal{A}_{X}) = M_{n}(\mathcal{A}_{X}) and Gl(n, \mathcal{A}_{X}) and Gl(n, \mathcal{A}_{X}) = M_{n}(\mathcal{A}_{X}) and Gl(n, \mathcal{A}_{X}) and Gl(n$$

within \mathcal{A} -isomorphisms, where $\dot{\mathcal{A}}$ designs the sheaf of invertible elements of \mathcal{A} . Note that $M_n(\dot{\mathcal{A}}_X)$ and $Gl(n, \mathcal{A}_X)$ are Lie group sheaves. Their Lie algebras are denoted respectively by

 $Gl(n, \mathcal{A}_x))$ $\mathfrak{M}_{\mathbf{n}}(\mathcal{A}_{\mathbf{X}}))$ and

Definition 3.4

Consider the following morphism :

$$[,]: \Xi(X) \times \Xi(X) \to \Xi(X), \quad (s, r) \to [s, r] = sr - rs$$

$$[3.10]$$

which satisfies the following properties :

(i) [s, r] = -[r, s], anti-symmetry (ii) [s, [r, t]] + [s, [r, t]] + [s, [r, t]] = 0, Jacobi identity.

We observe that [,] is a Lie bracket and $(\Xi(X) + , \cdot , [,])$ is a Lie algebra of vector fields of X.

Consequently, the sets (($\mathcal{I}(\mathcal{A})$, +, \cdot , [,]) and (($\mathcal{I}(X)(\Omega)$, +, \cdot , [,]) are Lie algebras of vector fields of \mathcal{A} and Ω , respectively and we set:

$$(\ \Xi \ (\mathcal{A}_X, d_X \ , \ \Omega_X \) \equiv ((\ \Xi \ (\mathcal{A}_X) \ , \ d_X \ , \ (\ \Xi \ (\Omega_X)) \equiv (\mathcal{A}_{(\Xi(X)}, \ d_{(\Xi(X)} \ , \ \Omega_{(\Xi(X)}), \ \Omega_{(\Xi(X)})))$$

and

is a Lie algebra differential triad over (\mathcal{A} , $\mathcal{Z}(X)$).

Definitions 3.5

The infinitesimal generators of the Lie algebra $Gl(n, A_X)$ of the Lie group $Gl(n, A_X)$ is defined, for any open U in X by :

where $g, g' \in Gl(n, \mathcal{A})(U)$ and $\alpha, \beta = 1, ..., n$. We define the Kirillov form of the Lie algebra $\mathcal{G}l(n, \mathcal{A}_X)$) of the Lie group $Gl(n, \mathcal{A}_X)$ as follows:

where the $C_{\alpha\beta}^{c}$ are the constant structures and the γ_{c} are the coefficients of an element γ of the dual $\mathfrak{Gl}^{*}(n, \mathcal{A}_{U}) = Hom_{\mathcal{A}}(Gl(n, \mathcal{A}_{U}), \mathcal{A}_{U})$, \mathcal{A}_{U}) of the Lie algebra $Gl(n, \mathcal{A}_{U})$.

Remark 3.6

Note that the Kirillov form is skew-symmetric and it is said to be closed iff we have :

or more explicitly,

$$\frac{\partial (Kiril_{\alpha\beta}(\gamma))}{\partial_U \gamma_C} = \frac{\partial (-\gamma_C C_{\alpha\beta}^C)}{\partial_U \gamma_C} = -C_{\alpha\beta}^C$$

Which implies that :

Definitions 3.7

The *Poisson bracket* is defined through the Kirillov form, for any open U in X and $\mathcal{E}, \mathcal{F} \in C^{\infty}(\mathfrak{Gl}^*(n, \mathcal{A}_U), \mathcal{A}_U)$ as follows:

$$\{\mathcal{E},\mathcal{F}\} = Kiril_{\alpha\beta}\left(\frac{\partial \mathcal{E}}{\partial_{U}\gamma_{\alpha}} \cdot \frac{\partial \mathcal{F}}{\partial_{U}\gamma_{\beta}}\right) \equiv Kiril_{\alpha\beta}\frac{\partial \mathcal{E}}{\partial_{U}\gamma_{\alpha}} \cdot \frac{\partial \mathcal{F}}{\partial_{U}\gamma_{\beta}} \qquad (3.16)$$

where
$$dT_X^{M^*} = (Gl^*(n, \mathcal{A}_X), d_X^{M^*}, M_n^*(\Omega_X))$$
[3.17]

represents the dual differential triad of $dT_X^M = (Gl(n, \mathcal{A}_X), d_X^M, M_n(\Omega_X))$ and consequently

is the dual differential triad of $\delta T_X^M = (\mathfrak{El} \ \mathcal{C} \ l(n, \mathcal{A}_X), \delta_X^M, \ \mathfrak{M}_n(\Omega_X)).$

The derivative of coadjoint action of a group triad on $\delta T_X^{M^*}$ designed by ad_X^* , allows us to define the Kirillov form on $\delta T_X^{M^*}$ as follows :

$$\langle ad^*_{\zeta,X}(\theta),\Upsilon\rangle = \langle \theta,[\zeta,\Upsilon]\rangle = Kiril_{\alpha\beta}(\theta)\zeta^{\alpha}\Upsilon^{\beta}, \text{ and } \langle ad^*_{\mathcal{E},X}(\mathbf{e}),\aleph\rangle = \langle \mathbf{e},[\mathcal{E},\aleph]\rangle = Kiril_{ij}(\mathbf{e})\mathcal{E}^{i}\aleph^{j}.$$

Remark 3.8

Note that the Poisson bracket is A - bilinear, skew-symmetric and verifies the Jacobi identity.

4. Illustration

Consider the matrix static group defined as follows:

$$SG_X = \left\{ \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & t \\ 0 & 1 & 1 \end{pmatrix} : y, t \in \mathbb{R}_X^{\mathcal{A}} \right\},$$
(4.1]

Where $\mathbb{R}^{\mathcal{A}}$ designs the real underlying of the K-algebra sheaf \mathcal{A} .

If we set:
$$h_X = \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & t \\ 0 & 1 & 1 \end{pmatrix} = (t,y) \text{ and } h'_X = \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & t \\ 0 & 1 & 1 \end{pmatrix} = (t',y'), \text{ then we have}$$

$$h_X \cdot h'_X = (t,y) \cdot (t',y') = (t+t',y+y')$$
[4.2]

Let sG_X be the Lie algebra of the group SG_X whose infinitesimal generators are T and Y. If we use the tensor notation, we can set $: \vartheta^{\alpha} = (t, y)$ and $\vartheta'^{\alpha} = (t', y')$ so that one would write:

$$SG_{\alpha,X} = \frac{\partial (h_X, h_X)^{\beta}}{\partial h_X^{\alpha}} \cdot \frac{\partial}{\partial h_X^{\beta}} = A_{\alpha}^{\beta} \cdot \frac{\partial}{\partial h_X^{\beta}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \partial_t \\ \partial_y \end{pmatrix}, \qquad (4.3)$$

(at the neutral e = (t,y) = (0,0)), where $\partial_t = \frac{\partial}{\partial_t}$ and $\partial_y = \frac{\partial}{\partial_y}$.

It follows that $\binom{T}{Y} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \partial_t \\ \partial_y \end{pmatrix} = \begin{pmatrix} \partial_t \\ \partial_y \end{pmatrix}$. Then, we obtain $T = \partial_t$ and $Y = \partial_y$ which forms a basis of the Lie algebra \mathfrak{sG}_X .

The Lie bracket is :

$$[T,Y] = 0$$
[4.4]

The Kirilov form becomes:

$$Kiril_{\alpha\beta}(\gamma) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \gamma \in \mathfrak{El}^*(2, \mathbb{R}^{\mathcal{A}}_X)$$

$$(4.5)$$

The Poisson bracket is:

$$\{\mathcal{E},\mathcal{F}\} = Kiril_{\alpha\beta} \left(\frac{\partial \mathcal{E}}{\partial_U \gamma_{\alpha}} \cdot \frac{\partial \mathcal{F}}{\partial_U \gamma_{\beta}}\right) = \left(\frac{\partial \mathcal{E}}{\partial \gamma_1}, \frac{\partial \mathcal{F}}{\partial \gamma_2}\right) \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{E}}{\partial \gamma_1} \\ \frac{\partial \mathcal{F}}{\partial \gamma_2} \end{pmatrix} = 0 \qquad (4.6)$$

Hence, this Poisson bracket provides Poisson structure associated to the Static group. We construct the dual $(s \mathfrak{G}_X^*, \{,\})$ of $s \mathfrak{G}_X$ endowed with the Poisson bracket which is the Poisson Static Manifold.

The differential $\delta_X^{M^*}$: \mathcal{C} $l \in l^*(n, \mathbb{R}_X^{\mathcal{A}}) \to \mathfrak{M}_n^*(\Omega_X)$ will permit us to extend the notion of Poisson Static Manifold in $\mathfrak{M}_n^*(\Omega_X)$.

5. Conclusion and Future Work

The main focuses of our investigation in this article were :

- The differential triads that we present as the basic object through which all fundamental notions are constructed;
- The construction of the dual ($s\mathfrak{e}_{x}^{*}$, {, }) of $s\mathfrak{e}_{x}$ endowed with the Poisson bracket which is the Poisson Static Manifold, through the Lie group and Lie algebra theories.

The future work shall consist to treat the following:

- The *Clifford* connection triad algebras ;
- The application of the *Clifford* connection triad algebras in physic.

VI. REFERENCES

[1] Ablamowich, R., G. Sobczyk, Lectures on Clifford (Geometric) Algebras and Applications. Birkhauser, Berlin, 2004.

[2] Boudelliona, M.S., A.Quadrac, Serre's reduction of linear functional systems INRIA report 7214, to appear in math coumput. Sci. 2010, 5, 169-177.

- [4] Cortella, A. Algèbre de Clifford, Journal of Algebra 314, p.252-266, 2007.
- [5] Goderment, R.. Topologie algébrique et théorie des faisceaux , Harmann, Paris. 2002
- [6] Gonzato, M. Les algèbres de Clifford sur R et G , France. 2005.
- [7] Herich, H. G. Stecker , Category theory , Boston , 1973.
- [8] Kashiwara, M. P. SchapiraCategories and sheaves ,Spinger, 2006.
- [9] Lam, T.Y. Problem on projective modules, Springer monograph in Mathematics, Springer Verlag. 2006. 47 pages.
- [10] M. Barakat- D.Robert, A meta-package for homological algebra, J.AlgebraAppl, 7(2008), 299-317. Homcalg project.
- [11] Mallios, A. Geometry of Vector sheaves . An axiomatic approach to Differential Geometric. Examples and Applications, Kluwer Academic Publishers Dordrecht, 1998.
- [12] Mallios, A. Geometry and Physics today, Int. J. Theor. Phys. 45 (2006), 1557-1593.
- [13] Mallios, A. Geometry of Vector sheaves . An axiomatic approach to Differential Geometric , Volume I: Vector sheaves, General Theory, Kluwer Academic Publishers Dordrecht, 1998.
- [14]Papatrianfilou, M. H. The Category of Differential Triads, Proceedings of, the 4th Panhellenic Conference on Geometry, Bull. Greek Math. Soc. 44 (2000), 129–141.
- [15] Ping, HD.Y. Yang , Vanishing Theorems on complete manifolds with weighted Poincaré inequality and Applications, Nagoya Math, J. 2006. 25-37. 2012.
- [16] Quadrat, A. An introduction to constructive algebraic analysis and its applications.7354 july 2010, INRIA, 237 pages.
- [17] Quadrat, A. System and structures: an algebraic analysis approach to mathematical system theory. 2010, 185 pages.
- [18] Rotman, J.J. An introduction to homological algebraic. Springer; 2nd edition.2009, 87 pages.
- [19] Schapira, P. Algebra and Topology, http://www.math.jussien.fr/shapira/lectnotes, 1/9/2011.
