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ABSTRACT  

 

 

The determination of quadratic forms throughout sheaves � and Ω, and functorial morphisms, play an important role in the construction of 
some categories of quadratic differential triads over X, ���, ���	×	���

, … In this paper, we generalize these notions so that we obtain categories of 

quadratic differential triads over the categories ����� and TOP, respectively. We also treat the notions of quadratic integral triads. The 
cohomology, homology and resolution notions are introduced with some applications in Electromagnetism. 
 

Key words: Quadratic differential triads, morphism of quadratic differential triads, categories of quadratic differential triads, quadratic integral triads and 
category of quadratic integral triads 

 
 

INTRODUCTION 
 

 
 

The sheaves and presheaves are treated over fixed topological spaces and their extensions are treated over fixed categories of 
topological spaces. We associate to a sheaf or a presheaf a quadratic form associated to a bilinear form or generally to an hermitian 
form. We use the complete presheaf to identify it, with the help of isomorphism, to a sheaf. The association of quadratic forms q�  
: �  →  �  and qΩ : Ω  → � of sheaves � and Ω, respectively , transforms a differential triad d�� = (��  , ��  , Ω�) over (X, 
��) to a  differential triad qd�� = ((��   , ���

) , �� , (Ω� , �Ω�
)) called a quadratic differential triad over  (X, (�� , ���

)). The 

composition law and the identity morphism play an important role in the construction of categories Q��� , Q�����
, Q�����(�	,�), 

Q�������
 and Q�����  of quadratic differential triads. From the reciprocal relation of the differential map d , said ∫ , we define the 

quadratic integral triad and consequently the category of integral triad. 
 
Definitions 1.1   Let X be a fixed topological space. A sheaf of sets over X, is defined as the triplet  
 
(S, s, X)                                                                                                                                              …………………………………[1.1] 
 
such that, s: S   →  X is a surjective (local) homeomorphism as treated in [11]. 
 
A presheaf P of sets on X is an assignment (correspondence) that associates a set P(U) to every open subset U of X, where the 
following conditions are satisfied  [11]: 
 

 For any open sets U,V of X, with V ⊆	U, there exists a restriction map ��
�

  : P(U) → P(V) 
 For every open set U of X, ��

� = ���(�). 

 For any open sets U, V, W in X, with W ⊆	V ⊆ U,	��
�  = ��

�   o   ��
� 

 

If S is a sheaf on a topological space X, then S (U) ≡ �(U; S) stands for the set of local sections of S on U and we set 	(S (U); 
��

�)	≡(�(U; S);	��
�) to be the presheaf of sections of S, where	��

� is the restriction map. 
 

Let �� ≡ 	�(S) = (S (U);	��
�) be a presheaf of sets on a topological space X. Then, �� is a complete presheaf if the following 

conditions are satisfied [11] and [25]: 
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 If U is an open subset of X and  (��)��� is an open covering of U; let s1, s2 � S (U) such that ���
� (s1) =	���

� (s2), for every i	�I, 
then s1 = s2 (the converse is certainly true). 

 Let U and (��)���  be as defined in (1); moreover let (si) � ∏ �(��)�  so that, for any Uij 	≡ Ui ∩ Uj≠ ∅; in (��)���, one has:  

����
�� (si) =  ����

��
(sj) 

 
Then, there exists an element s	� S (U) such that ���

� (s)	= si, for all i	� I. 
 
Remarks 1.2   
 
For any x є X , one has            
 
s-1 (x) : = ��                                                                                                                                                                                                                                 ………………………………………[1.2]                             

 
Sx is a fiber of S over x or a stalk of S at x 
 
We set                         
 
S = ⋃ ���є� ≡∑ ���є�                                                                                                                                    ………………………[1.3]      
                                  
If �� is a Group (Ring, vector space, module, algebra,…), then  (S , s, X ) is a sheaf of Groups (Rings, vector spaces , modules, 
algebras,…) over X and for each case we have :    
 
�� = ���

�є��⃖�������
�(�) ≡  ���

�є��⃖�������
�(�), with x є U	⊆	X, 

 
where ���

�є��⃖�������
 represents the inductive limit. 

 
Notation 1.3   We denote a sheaf of sets over X and the associate presheaf of sections of S, respectively by 
 
�� =	(S, s, X) and  �� ≡ 	�(S) = 	(S (U); ��

�)	                                                                                           ………………………..[1.4] 
 
Let (�, a, X) be a sheaf of ℂ�–algebras (or in other words, a ℂ�–algebra sheaf), which is preferably unital and commutative, with 
ℂ� the sheaf of complex numbers over X. We design by ��

�  and ��
�  	the sub sheaves of �� formed by positive elements and 

negative elements, respectively. Thus:     
 
��

� ∩ ��
�	= {0}�,		��

� 	∪ ��
�= ��                                                                               ………………………..[1.5] 

 
Definitions 1.4   The Sheaf �� = (S, s, X) is a vector sheaf, if, for any open U ⊆ X, we have 
 
�� 	 ≡		S(U)  ≅ 	 ��(U) ≡  ��

�                                                                                                                 ………………………..[1.6] 
 
The presheaf  ��=(�	(�);	��

�)  is a vector presheaf, if , for any open U ⊆ X, we have  
 
�� = 	 (�	(�);	��

�) 	 ≅ 		 (�	(�);	��
�)� = 		��

�                                                                                           ……………………....[1.7] 
 
Definitions 1.5   Let (S, s, X) and (Ʃ, σ, X) be two sheaves of sets over X. A morphism � of sheaves (or simply, a sheaf morphism) 
from (S, s, X) to (Ʃ, σ, X) is a continuous map:    
 
� : S    →     Ʃ 
                                                                                           
such that       
 
�(S) ⊆ Ʃ ,     σ  ◦ � = s.                                                                                                                                 ……………………[1.8] 
 
Let �� ≡ 	(S (U); ��

�)	 and   �Ʃ ≡ 	(Ʃ(U); ��
�)	be two presheaves of sections of S and  Ʃ, respectively.  

 

A morphism of presheaves (or simply, a presheaf morphism) from �� ≡ 	(S (U); ��
�)	 to   �Ʃ ≡ 	(Ʃ(U); ��

�) is defined as a 
continuous map  
 

��  ≡ 	�(�)    :   �� ≡ 	�(S)   →   �(ƩƩ)   ≡   �Ʃ                                                                                            ……………………..[1.9]  
 

such that           
               
��(S(U)) ⊆ Ʃ(U)   and   �� o  ��

� = ��
�

 o  ��                                                                                            ……………………..[1.10] 
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We design by �ℎ�	, ��ℎ�	and ����ℎ�	 the categories of sheaves, presheaves and complete presheaves, respectively. The functor 
�: �ℎ�		 →    ����ℎ�	 ⊆  ��ℎ�	,   S   →     ��	is an isomorphism called the section functor and by isomorphism between �ℎ�	and 
����ℎ�	, we define a functor  S: ����ℎ�	 →  �ℎ�		, with S o � ≡ ��	 = �����	

	called the she afification functor and satisfying the 

relation :  
 
S�(Ʃ) 	 ≡ S (�(Ʃ) = Ʃ, for any Ʃ  � �ℎ�	. 
 
Definition 1.6   Let X be a fixed topological space. A sheaf of categories over X, is defined as a triplet  (C, ᴄ, X) such that, ᴄ : C  → 
X is a surjective (local) homeomorphism ([6], [9], [12]). A presheaf P of categories on X is an assignment (correspondence) that 
associates a category of sets P(U) to every open subset U of X,  where the following conditions are satisfied:  
  

 For any open sets U, V of X, with V ⊆	U, there exists a restriction functor ��
�

  : P(U) → P(V), with  ��
�: Ob(P(U)  → 

Ob(P(V) and  ��
�:  Mor(P(U)  → Mor(P(V)  

  For every open set U of X, ��
� = ���(�). 

 For any open sets U, V, W in X, with W ⊆	V ⊆ U,	��
�  = ��

�   o   ��
� 

 
If S is a sheaf of categories on a topological space X, then: 
 
S (U) ≡ �(U; S), 
 
with   Ob(S (U))	≡ Ob( �(U; S)) and Mor( S (U)) ≡ Mor(�(U; S)), stands for the category of sets of local sections of  S on U, and 
we set 	(S (U); ��

�)	≡(�(U; S);	��
�), to be a category presheaf of sections of S, with Ob((S (U); ��

�))	≡Ob((�(U; S);	��
�) and 

Mor((S (U); ��
�))	≡Mor((�(U; S);	��

�)), where	��
� is the restriction functor. 

 
Let �� ≡ �(P) = (P(U);	��

�) be a presheaf (of categories) on a topological space X. Then, P is a complete presheaf if the following 
conditions are satisfied: 
 

(1) If U is an open subset of X and (��)���  is an open covering of U; let s1, s2 � P(U) such that  ���
� i(s1) = ���

� (s2), for     every 
i	�	I, then s1 = s2 (the converse is certainly true); 

 
(2) Let U and (��)���   be as in (1); moreover let (si) � ∏ �� (Ui) such that, for any Uij 	≡ Ui ∩ Uj≠ ∅; in (��)��� , we have:                    

����
�� (si)  =   ����

��
(sj) 

 

Then, there exists an element s	� F(U) such that ���
� (s)	= si, for all i	� I. 

 

Remark 1.7   For any x є X, we have:                 
 

ᴄ-1(x): = ��                                                                                                                                                                                                                                   ………………………………………[1.11]    

                                                                                            
and                                                              
 

C: = ⋃ ���є� ≡∑ ���є�                                                                                                                                   …………………….[1.12] 
 

Also, if �� is a category of sets (topological spaces, commutative groups, modules, algebras…), then (C, ᴄ, X) is a sheaf of 
categories of sets (topological spaces, commutative groups, modules, algebras…). Thus, as �� is a category, then we form the 
following sets said Ob (��) and Mor(��) such that :   
 
��(�) = ∑ (�є� ��(��)	,  Mor(C) =  ∑ (�є� ���(��))                                                                                …………………….[1.13] 
 
 

From presheaves theory, we set :   ��(��) = Ob((P(U);	��
�)), Mor(��) = Mor((P(U);	��

�))           
  

Definition 1.8 Let (C, ᴄ, X) and (D, ᴅ, X) be two sheaves of categories over X. A morphism of sheaves (or simply, a sheaf 
morphism) from (C, ᴄ, X) to (D, ᴅ, X) is a continuous functor  : C →   D such that �(C) ⊆ 	�   
 

with :    
     
ᴅ o	�	= ᴄ                                                                                                                                                       ………………………..[1.14] 
 
Let ��  ≡ �(C) = (C(U);	��

�) and ��  ≡ �(D) = (D(U);	ᴅ�
�) be too presheaves of categories on X. A morphism of presheaves (or 

simply, a presheaf morphism) from ��  ≡ �(C) = (C(U);	��
�) to ��  ≡ �(D) = (D(U);ᴅ�

�) is a continuous functor ��  : ��  →  ��  such 
that :   
     
ᴅ�

� o ��    =     �� o    ��
�                                                                                                                             ……………………...[1.15]  

 
where  ��:  C(U)    →    D(U) and  ��:  C(V)    →    D(V) are morphisms in the category of sets.  
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We observe in [1.14] and [1.15] that there are compositions of a morphism ᴅ with a functor	� to obtain a morphism c; i.e., that 
represents the composition of mathematical objects of different natures. This remains an open problem which needs a special 
attention. To address this question, we suggest to replace the topological space X by the category of opens of X, denoted ����� or 
in general by the category, denoted TOP,  of topological spaces. 
 
In the following, the correspondence from complete presheaves to sheaves and vice versa is possible through the sheafification 
functor S: ����ℎ�	 →  �ℎ�		or the section functor �: �ℎ�		 →    ����ℎ�	 ⊆  ��ℎ�		, with S o � ≡ ��	 = �����	

. With these regards, 

all sheaves are considered to be generated by complete presheaves. 
 
II. Quadratic Differential triads 
 
Some notions of this section are treated classically in [1] [3] [5] [7] [8] [10] [16-18] [26] [27] and in Abstract Algebra in [12-13], 
[25]. 
 
Definitions 2.1   Let �� be a free ��-module. A map ��: �� ⊕ �� →  ��	is an ��-bilinear form, if there exist, for any s, t ϵ 
��≡E(U), with U ⊆X open, two ��-linear forms ��,�:	��  →  ��, t → ��,�(t) and  ��,�: �� →  ��, t → ��,�(s) such that  
 
��(�, �)=��,�(�) = ��,�(s),                                                                                                                           ……………………...[2.1] 
 
where	��: ��  ⊕ ��  →  �� is an ��- bilinear form which satisfies the following 
 
��

��	�� = ��	�	(��
�	�	��

�), with V ⊆ U open.                                                                                                   ………………………[2.2] 
 
Definition 2.2   Let �� be a free ��-module (or a vector sheaf). A sheaf morphism ���	 : ��   →  �� is an �� -quadratic form 

associated to an �� -bilinear form ��  iff: 
 
���

(�) ≡ 	 ��,�(�) = 	 ��(�, �) ,                                                                                                                   ………………………[2.3]   

     
for any s ϵ E�≡ E (U), with U ⊆	X open, 	��: ��   →  �� is an ��- quadratic  form which satisfies the following:  

 

��
� o  ���

 =  ���
o 	��

� ,   with V ⊆ U open                                                                                                  ...……………………[2.4] 

 
Proposition 2.3 Let �(��) be a complete presheaf, where �� is a free �� -module of rank n. For every open U in X, let B(U) be 
the set consisting of all the bases of E(U). If, for every U, V open in X with V ⊆ U, we have the restriction map ��

�: B(U)   →   
B(V),then the set  �(��) = (B(U) , ��

�), where ��
� = ��

�/�(�),	is a complete presheaf. 

 
Proof 

 

(1). If U is an open subset of X and (��)��� is an open covering of U; let s1, s2 � E(U) such that ���
� (s1) = ���

� (s2), for every i�I. 

Suppose that s1, s2 � B(U) and ���
� (s1) = ���

� (s2). Then, ���
� (s1) = ���

� (s2), implies that (���
� /�(�) (s1) = (���

� /�(�) (s2); i.e.s1=s2 (the 

converse is certainly true). 
 

(2). Let U and (��)��� be as in (1); moreover let (si) � ∏ �(��)�  such that, for any Uij 	≡ Ui ∩ Uj≠ ∅, in (��)���, we have:  b���
�� (si)  

=  b���
��

(sj) which  implies that   (e���
�� /�(��) (si) = (e���

��
/�(��) (sj). 

 
Then, there exists an element s	� B(U) such that ���

� (s)	= si, for all i	� I.  
 
Hence shown that  �(��) is a complete presheaf. 
 
Remark 2.4   Let �� be a free ��-module (or a vector sheaf).	 If ���	: ��  →  �� is an �� -quadratic form associated to a 

symmetric	�� -bilinear form   ��: �� ⊕ �� →  �� , then we have:                
 
q�,�(s)q�,�(t) + 	q�,�(t)q�,�(s) = 2b�(s, t),                                                                                              ……………………..[2.5] 
 
where s, t  ϵ �� ≡E (U), with U ⊆	X open. 
 
Definition 2.5   Let �� be a free ��-module (or a vector sheaf). If ���	: �� → �� is an �� -quadratic form associated to an 	�� -

bilinear form  ��: �� ⊕ �� →  �� , then the  pair: 
 
(��, ���	)	= ��(��, ���	) ≡ (	��(��), ���(��)	)                                                                                       ………………………[2.6] 
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is called an �� -quadratic space. 
 
Definition 2.6   Let X be a topological space, Ω� be a sheaf of (differential) �� -modules over X, ��  be a derivative map as the 
�� -sheaf morphism which is also ��-linear, where �� = (ℝ� or ℂ�) and �� be a sheaf of unital	�-algebras over X, with ℝ≡( ℝ, 
ʀ, X)   and  ℂ ≡ (ℂ, ȼ, X) be respectively the sheaf of real numbers and  the sheaf of complex numbers. 
 
We define the triplet as treated in [12],  and  [14]:     
 
(��   , �� ,  Ω� )	                                                                                                                                     ………………………….[2.7] 
 
as the differential triad relative to (X , ��) iff, for every U,V open in X with V ⊆ U, the Leibniz (product) rule:   
 
��(�. �) = �. ��(�) + �. ��(�)                                                                                                 …………………………[2.8] 
 
is satisfied , with A, �	ϵ	��≡�(U) and ��: �� ≡ �(�) → Ω� ≡ Ω(U), be continuous and 
 
��-linear, and                                     
  
��

� o  �� =  �� o 	��
�                                                                                                                              ………………………….[2.9] 

 
where ��

�
  : � (U) → � (V) and ��

�
  : Ω (U) → Ω (V) are restriction maps. 

 
We set the differential triad as:            
 
��� = (��   ,   ��  ,  Ω�).                                                                                                                        …………………………[2.10]    
                                      
Definition 2.7   Let ���	be a differential triad. If (�� , ���	)	and (Ω�, �Ω�	)	are two ��-quadratic spaces, then ((�� , ���		) ,	��  , 

(Ω�, �Ω�	))	is an ��-quadratic differential triad if , for any  �� −quadratic form 	�Ω�	
: Ω�	 → 	��, there exists an endomorphism 

���	
: �� → 	 ��   such that, for every U, V open in X with V ⊆ U, we have  

 
�Ω�

 o  �� = 	���
  ,  ��

� o  ���		 =  ���		 o 	��
�     and  ��

� o  �Ω�	
 =  �Ω�	

o 	��
�

                                     …………………………..[2.11]     

 
Illustration 2.8   Let �� = ��

�   and Ω�
�

	
  be, respectively, the sets of differential 0-forms and differential 1-forms over the 

smooth manifold X. If (��,	�� ,Ω�
� )	is a differential triad on X, and �Ω�

� =:		Ω�
�		 → ��  is an �� –quadratic form such that, for 

every U open in X and w ϵ Ω�
�  we have 

 

�Ω�
� (w) = w². Then, for any a ≡ a(α) = kα , with k ≠ 0 and k, α ϵ ��, there exists a map 

 

���
 : �� 	 = 	 ��

� → �� = ��
�, a → ���

(a) = k²dα². 
 

After calculations, we find that:                  ���
(�)≡���

(a(α)) = (�Ω�
◦��) (a(α))  =  k²dα². 

 
Note that the map   	�  : ��	 ⊆ 	����

≡ 	(	��	)�  → 		��≡��
� is such that  � (�) = k� , for any �	ϵ	��	 and k ϵ	��

∗ , where ��	 is a 

subset of the underlying of �� in 		��  denoted by 	(	��	)�.  
 
Remark 2.9 According to the Definition 2.7 and the illustration 2.8, it follows that ���

� is a differential quadratic form. Thus, we 

use:     
 

���� = ((��
�	, ���

� 		)	, ��		, (Ω�, �Ω�	))                                                                                        ……………………………….[2.12] 

 

as the quadratic differential triad relative to (X , ��
�). 

 

Definitions 2.10 Let  ���� and  ���� be two quadratic differential triads relative to (X , ���) and (X , ���), respectively , with i, j 

= 1 ,2, …A morphism of differential triads from ���� to q���� is a triplet                                          

 

(ℎ��

��
,��

��
	, ℎΩ�

��
)                                                                                                                             …………………………………..[2.13] 

 
such that:               
 

��
��

(ℎ��

��
) 	 ≡ 	��(��

��
)(	ℎ��(��)

��
)  = 	ℎ��(Ω�)	

��
 ≡  ℎΩ�

��
                                                                    ……………………………….[2.14] 
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and it satisfies the Leibniz (product) rule, given in [2.8] and [2.9] , where  ℎ��

��
 � ���

��
= 	��� ��

(��� , ���) and ℎΩ�

��
 � � Ω�

��
=

	��� ��
(Ω�� , Ω��). 

 

For every U; V open in X with V ⊆ U, we have:  � �
� o  ��

��
 =  ��

��
 o 	��

�
   

 

where ��
�

  : ��
��

 (U) → ��
��

 (V) and � �
�

  : �Ω
��

 (U) → �Ω
��

 (V) are restriction maps. 
 

We have : - ℎ��

��
(1���

) = 1���
),   

  if		1���
	and	1���

 are the units of ���	and	���, respectively, with U open in X; 

                 -		ℎ��

��
(1�) = 1�= ���

�є��⃖�������
1��

(�) ≡ ���
�є��⃖�������

1���
 ,         

 if 1� denotes the unit of both ���	and	���, for all x ϵ U	⊆	X; 

                - ℎΩ�

��
(��	. � �)	= ℎ��

�� (��). ℎΩ�

�� (� �),  for any  
					

(��, �
�	

)	�	��� 	× 		Ω�� .										 

 
Notation 2.11 We denote the category of differential triads over X by:  
 
������                                                                                                                                                      ……………………….[2.15] 
 
where ������ ≡	(�����, �, X) and 		�(�����) ≡(�����(�), ��

�) are, respectively, sheaf and presheaf of categories of 
differential triads over X, with U, V opens in X. 
 
Let ���� be the category of ��-algebras over X,  ����� be the set of differentials given in [2.7] and [2.13], all, over X and 
������ be the category of differential form over X. We set:    
                                                                       
	������ = (����, �����, ������)                                                                                                          ………………………..[2.16] 
 
Definition 2.12 Let  �����	and  �����	be two quadratic differential triads relative to (X , ���	) and (X , ���), respectively , with i, 

j = 1 ,2, …A morphism of quadratic differential triads from qdT��  to q���� is a triplet:         

 

(ℎ��

��
,��

��
	, ℎΩ�

��
),                                                                                                                                     …………………………[2.17] 

 
such that  [2.13] , [2.14] and all properties of Definition 2.10 are satisfied. Also, we have    
 

ℎ�
��

��
 o  	����

 = ℎ��

��
 ,  ����	 o 	�Ω��

 = ℎΩ�

��
 , �Ω��

	o 	���	= ����
   and  ���  o 	ℎ�

��

��
= ���� ,                  ..………………………[2.18] 

 

with  ℎ�
��

��
, ℎ��

��
  �  � ��

��
 , ℎΩ�

��
	� � Ω�

��
, 	����

	� End(���), �Ω��
	� 	��� ��

(Ω�� , ���),  

 
	���		� 	��� ��

(���, Ω��),  	���		� 	��� ��
(���, Ω��) and ���� �	��� ��

(���, Ω��),                       

 

where		���	, 	���	, ����  satisfy the Leibniz (product) rule, 	����
	���	�Ω��

 are two quadratic forms and ℎ��

��
, ℎ�

��

��
,	ℎΩ�

��
 are 

continuous maps.   
 

We observe that the triplet:  ((� ��

��
,		�

���

�� ), ��
��

, (� Ω�

��
, 	�

�Ω�

�� ))  

 
is a quadratic differential triad. For every U, V opens in X with V ⊆ U, we have: 
 

� �
� o  ��

��
 =  ��

��
 o 	��

�
, 

 

where ��
�

  : ��
��

 (U) → ��
��

 (V) and � �
�

  : �Ω
��

 (U) → �Ω
��

 (V) are restriction maps. 
 
Notation 2.13 We denote the category of quadratic differential triads over X by:   
 
�������                                                                                                                                                    ………………………[2.19] 
 
where Q������ ≡	(������, �, X) and 		�(������) ≡(������(�), ��

�) are, respectively, sheaf and presheaf of categories of 
quadratic differential triads over X, with U, V open in X. 
 
Let �����	be the category of quadratic ��-algebra spaces over X,  ����� be the set of differentials given in [2.7] and [2.13], all, 
over X  and Q������ be the category of quadratic differential forms over X.    We set:       
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	������� = (�����, �����, �������).                                                                                               ………………………….[2.20] 
 
Remarks 2.14    
                             
We can replace the topological space X by, respectively, the topological spaces id�    and ��� (�	, �) to construct, respectively, 
the categories of quadratic differential triads over id�  and ��� (�	, �), respectively, denoted by: 
                         
 Q��������

  and   Q��������(�	,�)                                                                                                     ………………………….[2.21] 

 
From sheaves over categories, we can replace the topological space X, respectively, by the categories  ����� and TOP to 
construct, respectively, the categories of quadratic differential triads over ����� and TOP, denoted: 
 
Q����������

  and   Q��������                                                                                                         …………………………..[2.22] 

 
The categories Q��������

, Q��������(�	,�), and 	�����������
 are subcategories of the category 

 
Q�������� ≡ QDiffT                                                                                                                          …………………………..[2.23] 
 
of quadratic differential triads over the category TOP of all topological spaces. 
 

Let (�(�), �(d), �(Ω)) and ((ℎ�(�)
��

), �(���), (ℎ�(Ω)
��

)) be, respectively, the complete presheaf and the complete presheaf 

morphism differential triads. Consider an operator Q, defined as follows: 
 
Q(�(�), �(d), �(Ω)) = ((�(�), ��(�)), �(d), (�(Ω), ��(Ω)))                                                           ……………………………[2.24] 

 
and :                     
 

Q(�(ℎ�
��

)	, �(���), �(ℎΩ
��

)) = (ℎ�(�)
��

	, �(�	��), ℎ�(Ω)
��

) ,                                                                  ……………………………[2.25] 

 
where ��(�) and ��(Ω) satisfy  the following condition :   

      
��(Ω) o �(d) = ��(�)                                                                                                                           …………………………...[2.26] 

 
From the definition of the sheafification functor S, we have: 
 

Q(��(�), ��(d), ��(Ω)) = ((	�, ��), d, (Ω, �Ω)) ,    Q(��(ℎ�
��

), ��(���), ��(ℎΩ
��

)) = (ℎ�
��

	, �	�� , ℎΩ
��

). 
 
We set :          
 

Q(�, d, Ω) = (((�, ��), d, (Ω, �Ω)), Q(ℎ�
��

	, ���, ℎΩ
��

) = (ℎ�
��

	, �	�� , ℎΩ
��

)                                           …………………………[2.27] 
                                                                                  
where ��  and �Ω satisfy  the condition :      
 
�Ω o d = ��                                                                                                                                           ………………………….[2.28] 
 
Here the question is: what kind of pairs (��, �Ω) can satisfy the relation (2.28)? 
 

We know that through the pair (�, Ω	), we can define several pairs of quadratic spaces  ((� = ��(�)  , ���(�)
� ) , (Ω	= ��(Ω)  , 

���(Ω)
� )) , where  i = 1,2,3,… To answer this question, we have to fix a (differential) � -quadratic form �Ω̇ : Ω  → � such that:     

 

∫ �Ω̇ = ���                                                                                                                                         …………………………[2.29] 
 
where the symbol ʃ�Ω̇ designs the “integral” of the differential form �Ω̇ , where ���  is the primitive function of �Ω̇. We have:  
 
���= ��  + k ,  with k ϵ ��                                                                                                                     ………………………..[2.30] 
 
Note that �� designs the underlying of  � in � and we realize an equivalence relation, ~ , defined in ����(�)≡��� �(�, �) as 
follows:       
 

��
� ~ ��

�
  iff  ��

�
−	��

� = k, with k ϵ	��                                                                                                    ………………………...[2.31] 
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Referring to the above concern , the (differential) � -quadratic form  �Ω̇ : Ω    →  � that is defined, leads us to choose a 
subcategory �̇�����  of QDiffT whose objects    
 
((� ,���), d , (Ω , �Ω̇))                                                                          ………………………….[2.32] 
 
satisfy the relations [2.28] [2.29] and [2.30], for any pair (�, Ω	). 
 

Definition 2.16 Let us denote by ���  and �Ω̇ be the set of differential quadratic forms �Ω̇ : Ω  →   �	,… and the set of quadratic 

forms ���  : �  →   �	, …, respectively which satisfy  [2.28] ,[2.29] and[2.30]. 
 

We define the triplet:                                                                        (�Ω	̇, ʃ, ���)	                                …………………………..[2.33] 
 

where ʃ : �Ω	̇ →  ��̇, �Ω̇ → 		 ∫ �Ω̇ = ���  is continuous and satisfies [2.30]. We say that the triplet [2.33] is the quadratic integral 
triad over � if and only if, for any x ∈ U, with U open in X, we have  
 
ʃ� = ���

�є��⃖�������
ʃ

�
 =  ���

�є��⃖�������
	(��)��	 = (��)��	  ,                                                                                                 ………………………….[2.34] 

 
where d satisfies [2.8] [2.9] and [2.10]. We set: 
 

QIT=(�Ω	̇, ʃ,���)	=	(��(�Ω	̇), ��(ʃ), ��(���))	≡ �� (�Ω	̇, ʃ, ���)	= ��(Q IT)                                    ………………………….[2.35] 
 
The above expression represents the category of quadratic integral triads. 
 
Theorem 2.17 Let M ∈ ��	×	� be a matrix, Ω = ��	×	�/ ��	×	�M be the left �-module finitely represented by M and p : ��	×	�    
→    Ω be the canonical projection onto Ω. If , for any open U in X, {��}  is the standard �(U)-basis of ��	×	�(U)	≡ �(�)�	×	�,  
��= ��(��), with i=1,…,n , and E be a left �-module , then we have the following abelian group �(U)-isomorphism : 
 

��� ��
(Ω�,	��)   →    �����

(��
� )	, �� →  �� ,   

 

where ��	� ∈ �����
(��

�) and  {�	 ∈ 	 ��
�	/�� = 0			}. 

 
Proof. It is obvious that, because there is a one to one correspondence between the elements of ��� ��

(Ω�,	��)   and    

�����
(��

� ).( Refer also to [19], Theorem 1.1.1.). 

 
III. Quadratic functorial operator 
 
Some notions of this section are treated classically in [6] and [8], but in Abstract Differential Geometry in [6], [12] and [14]. 
 

Definition 3.1   Let  �̇ ∶	�����			 → 		 �̇�����⊆ QDiffT be an operator which satisfies the relations [2.26], and [2.27]. Then  �̇ is  
a quadratic functorial operator .       
                                       
Theorem 3.2 The quadratic functorial operator �̇ is a covariant functor. 
 
Proof. Consider ���	, ���, ���  ∈ Ob(DT) and m���� ∈ Hom(���	, ���), m����  ∈  Hom(���	, ��� )   and  m����  ∈  Hom(���	, ��� ). If 

we apply the operator �̇ on DiffT, we have: 
 

 (1) �̇(�����◦ m����) = m�̇����◦ m�̇����  = �̇(m����)◦�̇(m����), 

 (2)  �̇(�����
) = ��� �̇��

 = ��� (̇���). 

   
Remark 3.3    By convenience, we set:    
 

�̇�����:=˂(DiffT ,   �̇ ≔ {���	, �̇Ω})˃,                                                                                                         …………………….[3.1] 
 
where {�̇�	, �̇Ω} satidfies the relations from [2.25] up [ 2.32] . 
 
We construct the quadratic functor operators as follows: 
 

�̇� ∶	 ������ → �̇������, �̇���(�,�):��������(�,�) → �̇��������(�,�), �̇�����
∶	 ����������

→ �̇����������
,  

�̇��� ∶	 �������� → �̇�������� . 
 

Let ℚ �̇ and ℚ Ω̇ be the matrices representing the quadratic forms ��̇  and �Ω̇. Thus, for any S = (s1 , s2 ,…, sn ) in Gl(n , ��) and R 
= (r1 , r2 ,…, rm ) in ��(	Ω�) , with U ⊆  X open, we have  
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S ℚ �̇�
�� = 0,         R ℚ Ω̇�

�� = 0                                                                                                        ……………………………..[3.2] 

 
where	�� and �� are transposed of  S and R, respectively. 
 
Remark 3.4   If (�� , ���

) is a subalgebra of (��, ���
) ; then, using the duality notion, there exists a subspace of  (��, ���

), 

said , (��	, ���
)� 	  such that:  

 
 (�� , ���

) ⊕	(��	, ���
)� = (��, ���

)                                                                                           ……………………………….[3.3]  

 

and consequently we have the following lemma and theorem, where ��
�  designs the orthogonal of �� and we set:  

 

(��	, ���
)� ≡ (��

� , �
��

� )                                                                                                               ……………………………….[3.4] 

  

Lemma 3.5 Let � =��⊕ �� and  Ω� = 	Ω�
�⊕ Ω�

� such that ��� =	(��	,	d , Ω�
�) and  ���= (��	,	d , Ω�

�) are differential 
triads. Then , there exists a differential triad dT = ��(dT) = (�,	d , Ω�) such that  
 
dT = ���⊕ ���                                                                                                                                ………………………………[3.5] 
 
Proof.  The existence results to the following decompositions: 
 
Let a = ��	+ �� and s = ��	+ �� be decompositions  of sections a ϵ	��, with  (��	, ��) ϵ ���

⊕���,  and  s ϵ Ω�
�, with  (��	, ��) ϵ 

Ω�
�

�
 ⊕  Ω�

�
�

, such that 	�� and Ω�
�  verify respectively, the splitting �� = ���

⊕ ���   and  Ω�
�= Ω�

�
�

 ⊕  Ω�
�

�
, U ⊆ X 

open. Then, we have the map �� : ���
⊕���  →  Ω�

�
�

⊕	Ω�
�

�
, such that  �� (��	+ ��) = �� (��	)+ �� (��) ≡ ��	+ ��	 and  �� 

(��	. ��) = �� (��)	��+ ��	 �� (��). We obtain  
 
dT≡(�, d, Ω�)=(��⊕��, ��+ ��, Ω�

�⊕	Ω�
�)=(��	,	d , Ω�

�)⊕ (��	,	d , Ω�
�) = ��� ⊕ ���. 

                                                                           

Theorem 3.6 Let � = ��⊕ �� and and Ω�	= 	 Ω�
�⊕ Ω�

�such that  ���� =	 ((��, ���
)	,	d, (Ω�

�	, �Ω�
�)) and  ���� = 

((��, ���
)	,	d ,(Ω�

�	, �Ω�
�)) be two differential triads. Then, there exists a differential triad qdT=	((�, ��), d, (Ω�, �Ω�))  such that: 

 
qdT=		����⊕ ����                                                                                                                               …………………………..[3.6] 
 
Proof. The existence results to the decompositions of � and Ω�in direct sums. Also, using Lemma 3.5  and the definition of a 
quadratic differential triad, we have, for all U ⊆ X open, 
  
����     = �����	⊕ �����. 
 
Remarks 3.7  -Using the relation [2.28] and Theorem 3.6, we observe that �Ω�

� o �� = ���
 and    �Ω�

� o �� = ���
 imply that 

�Ω�	o d = �� . 
 

-Let ��
��

=	��� �(��, ��)  and  �
Ω�
��

=	��� �(Ω�
� , Ω�

�)  be two sheaves such that the triplet   (��
��

, ���, �
Ω�
��

) is a differential triad 

over X, ���, ��� (�	, �), ����� or TOP. Then, the quadratic functorial operator �̇ applies on the differential triad ����= (��
��

, 

���, �
Ω�
��

) so that this differential triad becomes the quadratic differential triad:    

          

�(̇����) = 	 �̇����                                                                                                                                     ………………………[3.7] 
 
IV. Homology – cohomology-resolutions 
 
Some notions of this section are treated classically in [2-4], [6], [8], [10], [17-22], [26] and [27], in Abstract Algebra in [6] and in 
Abstract Differential Geometry in [12-14]. 
 
Definition 4.1 A complex of  free left (resp. right) �-modules denoted by 
 

Ω∗  ≡  	…						
��� �

�⎯� 	Ω� 		
��

→	Ω���		
��� �

�⎯� 			…		                                                                                                ………………………….[4.1] 
 
is a sequence of left (resp. right) �-homomorphisms ��(��): ��(Ω�) →  ��(Ω���) between left (resp. right) �-modules which 
satisfy, for any open U in X, : 
 
Im ����(�) 		 ⊆ 	 	��� 	��(U) , i.e.,   ��		� o  ��		��� = 0� ≡0,  for all i ∈Z.                                        ………………………….[4.2]  
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We set:                              
 
�� = 	�, �� = �,     for any i  ≥ 1,                                                                                                            …………………………[4.3] 

 
where the symbol d designs the differential �-homomorphism. 
 
If we specify the order of the set Ω=	��(Ω) of differential forms (sheaf of differential �-modules) by setting:   
 
Ω� = �  and   Ω�  ≡ (Ω�)� =  ⋀ �Ω� ,                                                                                                       ………………………….[4.4] 
 
with ∧	≡	∧�  be the exterior (the skew symmetric homological tensor ) product,  for any  i  ≥ 1. 
 
We have, more explicitly :                                    Ω�= � ∧ Ω ,    Ω� 	 = 	� ∧ Ω� ∧ Ω�, … 
 
Definitions 4.2 The defect of exactness of [4.1] is left (respectively right) �-module defined by 
 
� �(Ω∗)=		 Ker ��/ Im ����                                                                                                                     ………………………….[4.5] 
 
The complex [4.1] is said to be exactness of [4.1] at Ω�	if the left (resp. right) �-module defined by                                                                              
                        
� �(Ω∗)=	��(� �(Ω∗)) = ��(0)=0                                                                                                         …………………………..[4.6] 
 
In other words Im ���� = ��(��	����) = ��(��� 	��) 	 = 	��� 	�� . 
 
The complex [4.1] is said to be exact if:                                    Ker ��=	Im ���� ,           for all i ∈ z        …………………….[4.7]    
                                              
Definition 4.3 A complex of free left (resp. right) �-modules denoted by  
 

Ω∗  ≡  	…						
ʃ�� �
�⎯� Ω��� 		

ʃ�� �
�⎯� 	 		Ω�			

ʃ�
→			…		                                                                                                ……………………….[4.8] 

 
is a sequence of left (resp. right) �-homomorphisms ʃʃ���	: Ω��� →  Ω�  between left (resp. right) �-modules which satisfy, for 
any open U in X:       
 
Im ʃ���(�) ⊆ ��� ʃ�(�),          for all i ∈ Z .                                                                                       …………………………….[4.9]  
                                            
Also, for any x	є U, with U open in X :  
 
ʃ�� = 					 ���

�є��⃖�������
ʃ

��
 							= 		lim	(��	�)	��

�є��⃖�������
= 	 	(��	�)	��,     for any i  ≥ 1,                                                 …………………………...[4.10] 

 
to the nearest constant , where the symbol ʃ designs the integral �-homomorphism. 
 
The defect of exactness of [4.8] at Ω�  is the left (resp. right) �-module defined by  
 
��(Ω∗) = ��(��(Ω∗))=��(Ker ʃ�	/Im ʃ���)=��(Kerʃ

�
	)/��(Imʃ���)=Kerʃ�	/Im ʃ

���
                          ……………………………[4.11]  

                  
The complex [4.8] is said to be exact at Ω�  if:          
 
��(Ω∗)=��(��(Ω∗))=	��(0)=0                                                                                                           …………………………...[4.12] 
 
In other words  Imʃ��� = ��(��ʃ���) = ��(��� ʃ�) 	 = ��� ʃ�  . 
 
The complex [4.8] is exact iff:  
       
Kerʃ�= Imʃ���  , for all i ∈ Z                                                                                                                 …………………………..[4.13] 

 
                                                
Remark 4.4   The complexes [4.1] and [4.8] are represented as follows: 
 

Ω∗  ≡  	…			
��� �

�⎯� 				Ω� 							
��

→							Ω���		
��� �

�⎯� 			
…
	  

             ‖                   ‖ 

Ω∗  ≡       	…					
ʃ�
← 			Ω�								

ʃ�� �
�⎯� 					Ω���			

ʃ�� �
�⎯�			…		, 
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where we set  Ω�  = Ω� ,  within �-isomorphism, for all i ∈ z.  
 
In other words, we have :                               
 ʃ���	�		�� = 	 ��Ω�                                                                                                                                    ……………………….[4.14] 

 
 

Definitions 4.5 Referring to [4.5] and [4.11] , we define  � �(Ω∗) and ��(Ω∗) as respectively the ith  cohomology and the ith 
homology. 
 
Remark 4.6 If we replace, in the Remark 4.4, Ω by the differential triad dT, then we obtain the isomorphism between the complex 
of differential triads and complex of integral triads, through the following diagram: 
 

                                      ��∗  ≡  	…		
����� �

�⎯⎯⎯⎯� 								 ��� 							
����

�⎯⎯� 				 					�����		
����� �

�⎯⎯⎯⎯� 			…		 
                                                                             ‖																															‖	 

                                       ��∗  ≡  	…						
�	ʃ��
�⎯�							ʃ��								

�	ʃ��� �
�⎯⎯⎯� 								ʃ����			

�ʃ	��� �
�⎯⎯⎯�			…		, 

 
where we set  ��� = ʃ��,  within �-isomorphism to the nearest constant, and ���� and mʃT� two morphisms, respectively, of 
differential triads and of integral triads, for all i ∈ Z, with dT=	��(dT) , mdT=	��(mdT),	 ʃT= 	��(ʃT) and mʃT=	��(mʃT). We 
observe that dT = (	�, �, Ω)	���	ʃT= (	Ω, ʃ	, �) are differential triad and integral triad, respectively. 
 
In other words, we have :                       
 
 �ʃ����	�	���� = 	 �����                                                                                                                       ………………………….[4.15] 
 
Definitions 4.7 Referring to [4.5], [4.11] and Definitions 4.5, we define  � �(��∗) and ��(ʃ�∗) as, respectively, the  ith co homology 
and the ith homology of differential and integral triads. 
 
Definitions 4.8  A finite free resolution of the left �-module Ω is an exact sequence of the form (see [19], Definition 1.2.1, p.13-
14)    
 

…						
����
�� 	��

�×�� 				
����
�� 				��

�×��		
��
�� 			Ω�   →    ��  ,               x ∈ X                                                  …………………………..[4.16]    

 

where  ����: ��
�×��  →  ��

�×��� �  is the left ��-homomorphism defined as follows : 
 

����(�)    =   ���
�є��⃖�������

����	(�) 							 = 									���			�	���
�є��⃖�������

	 =  �	��� ,                x ∈ U  ⊆ X                                ……………………………[4.17]     

              

for all	�� ∈ ��
�×��, with ��� ∈ ��

��×��� �  or ��� ∈ ��
��×��� �… 

 
A finite free resolution of the right �-module Ω is an exact sequence such that , for any x ∈ U, with U in X, we have  
 

0	 ← 	 Ω� 			
��
← 	 ��

��×� 				
����
��				��

��×� 	
����
��	…			   ,        x ∈ X                                                              …………………………..[4.18]   

  

where ����: ��
�×��   →  ��

�×��� �  is the left ��-homomorphism defined as follows : 
 

����(�)   =   ���
�є��⃖�������

����(�) 			 = 										���	����
�є��⃖�������

	    =   ���� ,                  x ∈ U  ⊆ X                                 …………………………..[4.19]     

             

for all �� ∈ ��
�×�� , with ��� ∈ ��

��� �×	�� or ��� ∈ ��
��� �×	��…   

 

 
V. Applications 
 
V.I. Let us consider the first set of Maxwell equations, said,  
 

  
���	 + (� ∧ 	�) = 0

�	 ∙	� = �
                                                                                                                 …………………………..[5.1] 

 
where B(resp. E) designs the magnetic(resp. electric) field, 0(resp.	�) designs the zero vector (resp. the zero scalar) and � = 

ℚ [��,	��,	��,	��] be the polynomial algebra of operators with rational constant coefficients, with ��	 =
�

��	
≡

�

���	
 ,i=0,1,2,3 such that                        

�

���	
 = 

�

��	
. 
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If �� ∈ ��×	� is the representation matrix of [5.1], it follows that, for any  x ∈ X , we have: 
 

���=   �

�� 0 0
0 �� 0

		0 −�� 					��

			�� 		0 			−��

0 0 ��

�� �� ��

−��		 	�� 					0
0 	0 					0

�

�

 

 
Let Ω = ��	×�/ ��	×	��� be the left �-module finitely represented by �� (see Theorem 2.17). Using Definition 4.8 and [5.1], we 
observe that the left �-module Ω admits, for any x ∈ X, the following free resolution: 
 

�� → 		 �� 				
����
�� 	��

�×� 				
����
�� 				��

�×�		
��
�� 			Ω�   →    ��,                                                                ……………………………...[5.2]  

  

where the matrix ���=(	��,	��,	��, −��)x ∈ ��
�×	� defines the compatibility conditions 

 
(�	 ∙�			 − 	 			���)�		=  ��                                                                                                                    ……………………………...[5.3]        
                                        
of the inhomogeneous linear system  
                                                                                      ( ��� + (� ∧ 	�))� = �� 
 
                                                                                                                                                           ……………………………..[5.4]      
							                                                                                 (�	 ∙	�)	� = ��                                
 
where B, E, 	� are vectors and � is a scalar.  In this case, � is the density of current and � is the charge. 
 
If $=	��($) is a open convex subsheaf of  �ℝ	�, where �ℝ is real the underlying of �, then the space ��($) of smooth functions 
on $ is an injective Ω = �ℝ[��,	��,	��,	��]-module. Using the formula [5.4] , we can easily check, through the parameterization,  
that , for any x ∈ X, we can set: 
 
																																																																																																	�� = (� ∧ 	�)� 

                                                                                                                                                    …………………………………[5.5]                 
                                                                                     �� = (−��� − 	��)� , 
 
where A ∈ �	�and v ∈ �, with F be an injective �ℝ[��,	��,	��,	��]-module  ��($). We observe that (A,v) is the quadric-potential 
of [5.1] or [5.4], i.e.,  ���	= ���	�	in the exact sequence:        
 

 0� 	 ← 	 �� 				
����
�� 	��

� 				
����
��				��

� 	
����
��		�� 	

����
�� ��� �ℝ�

(Ω�,	��)←  0�.                                                ……………………………..[5.6] 

 
Note that the quadric-potential (A,v) is not uniquely defined since the right-hand side of  [5.5] is parameterized, for example, by : 
 
																																																																																																	�� =  (−��)� 

                                                                                                                                             ……………………………[5.7]                 
                                                                                      �� = (���	)� , 
 
in other words, 
 
����(���)= ����. 
 
Consequently, for any � ∈ F, the gauge transformations A → A -	��, v →  v + ��� (See [12] and [19]) give the same fields E and B.  
                       
V.II. Consider the electromagnetism Lagrangian functional, given by: 
 

ʃʃ	�

	�
(��‖�‖ −	

�

��
‖�‖) dt d�����d��,                                                                                                ……………………………[5.8] 

 
where ��(����. ��) is the dielectric constant(resp. the magnetic constant), under the differential constraint formed by the first set of 
Maxwell’s  equations [5.1] . By varying the Lagrangian functional, we introduce , for any � ∈ X, the maps  
 

��:  ��
� 		 → 			 ��

�, �
�
�

�	� →  �
−	

�

��
�

���
�

�

                                                                                                           …………………...[5.9] 

and      
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																																																																																																		��� + (� ∧ 	�))� = 0� 
 
							                                                                                 (�	 ∙	�)	� = 0� 
 

                  (�	o	�)�:  ��
� 		 → 			 ��

�, 	(�, �)�  →                                                                                                                        [5.10] 

                                                          (
�

��
(� ∧ 	�) − ��		���)	� = 0�      

 
      (���	 ∙	�)	� = 0� 
                        
                                                                                                                                                                                                                        
which is the complete set of Maxwell equations. Using [4.24], we can present the components of B(resp.E) by : 
 

(
�

��
� ��

� − �)��= o         (resp.  (
�

��
� ���

� − ����= o),                                                                        ……………………………[5.11] 

 

where �= ��
�+ ��

�+ ��
�is the Laplacian operator and ��

�= 
�

����
  , i.e. the fields B and E are space- time waves.  

Now, consider the polynomial operator A :  �� 	 → 	 �� obtained by substituting the previous parametrization into the last two 
equations of [5.5] and by using the relation 
  
� ∧ 	� ∧ 	� =	�(	�. �) – �A. 
 
We obtain, for any � ∈ X: 
 

�

��
(

�

��
�

���

��� − �� + � �	�. � +
�

��
� 		

��

��
�)� = �� 

                                           (A,v)  →                                                                                                     …………………………..[5.12]          

(��(
�

��
�

���

��� − �� −
��

��
�	�. � +

�

��
� 		

��

��
�)� = �� 

 
 
Then, putting together equations [5.5] and [5.11], and using [1.12],  we obtain the system 
 

                                                                     
�

	��
(

�

��
�

���

��� − �� + �(	�. � +
�

��
� 		

��

��
) = � 

                                                                      ��(
�

��
�

���

��� − �� −
��

��
(	�. � +

�

��
� 		

��

��
) = �                    …………………………...[5.13]                                                                                                                               

                                                                     � ∧ � = �                   
                                                                     -���- �v = E 
 

In electromagnetism, by fixing the Lorentz gauge defined by �. � +
�

��
� 		

��

��
= 0 the system [5.13] is generally simplified as 

follows      
                    

																																																																														
1

��

�
1

��
�

���

���
− ��� 	 = 		� 

                                                                   �� �
�

��
�

���

��� − ��� 	 = 		�                                                  …………………………… [5.14]                                                                                                                             

                                       																																		� ∧ � = �                   
                                                                      -���- �v = E 
   
This result shows us that each component of the quadri-potential (A,v) is a space-time wave, where               

(A,v)  = ⋃ (�, �)��є� ≡∑ (�, �)��є� . 
 
VI. Conclusion and Future Development 
 
In this article, we have constructed categories ����	, ������

 and ������(�	,�) whose objects are quadratic differential triads ����  

= ((��, ���	), ��, (Ω
�

�, �Ω�
�
)) and whose morphisms m�����  = (ℎ�

��
, ���,  ℎ

Ω�
��

) satisfy [2.18], respectively, over some topological 

spaces X, ���	and Hom(X , Y). We have generalize these concepts over the categories ����� and TOP to construct categories 

denoted by ��������
 and ������, or in the particular cases (see Definition 3.1 and Remark 3.3) by  �̇��	�����

 and �̇��	��� , 

respectively. We have also introduced the notion of integral triad. The notions of (quadratic) differential triads and (quadratic) 
integral triads allowed us to analyze respectively the co homology and homology concepts. We have finished our paper with some 
physics applications in Electromagnetism. These notions can be applied for future research when dealing with The Poincaré gauge 
(or radial gauge), Weyl gauge known as temporal gauge or Hamiltonian gauge, axial gauge and gauge fixing. 
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To conclude, one should note that many aspects of this peculiar and techniques still remain to be explored. For instance, it would 
be interesting to study:  
 

 The 2-Minkowsky differential triads that we defined as an image of the 2-real Euclidian differential triad through a 
functorial morphism. 

 The Clifford connection triad algebras with physics applications. 
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