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ABSTRACT  

 

The method of finite element is a numerical technique that solves or at least approximates enough to a system of differential equations related 
with a physical or engineering problem. This study looked into the usefulness of the finite element method as a gainful tool for engineering 
analysis; it equally seeks to widen the horizon of analysts on the use of this useful analytical tool. The FEM provides a standard process for 
converting governing energy principles or governing differential equations in to a system of matrix equations to be solved for an approximate 
solution. For linear problems such solutions can be very accurate and quickly obtained. Having obtained an approximate solution, the FEM 
provides additional standard procedures for follow up calculations (post‐processing), such as determining the integral of the solution, or its 
derivatives at various points in the shape. When the FEM is applied to a specific field of analysis (like stress analysis, thermal analysis, or 
vibration analysis) it is often referred to as finite element analysis (FEA). FEA is the most common tool for stress and structural analysis.  
 

Key Words:   Finite element method (FEM), Finite element analysis (FEA), Boundary value problems (BVP), Degree of freedom (DOF), Computer Aided 
Design (CAD). 
 

 
 

 

 

INTRODUCTION 
 

The finite element method is one of the most powerful 
numerical techniques ever devised for solving differential and 
integral equations of initial and boundary-value problems 
(BVP) in geometrically complicated regions. There is some 
data that cannot be ignored when analyzing an element by the 
finite element method. This input data is to define the domain, 
the boundary and initial conditions and also the physical 
properties. After knowing this data, if the analysis is done 
carefully, it will give satisfactory results. It can be said that the 
process to do this analysis is very methodical, and that it is 
why it is so popular, because that makes it easier to apply. 
“The finite element analysis of a problem is so systematic that 
it can be divided into a set of logical steps that can be 
implemented on a digital computer and can be utilized to solve 
a wide range of problems by merely changing the data input to 
the computer program (Felippa et al., 2006). Two fundamental 
concepts birth the advancement in the FEM approach. In 1963 
it was shown that the FEM was a variation of Raleigh-Ritz 
Method (which produces a set of linear equations by 
minimizing the potential energy of the system). This lead to its 
application in different areas of heat transfer, fluid flow, etc. 
Also, in 1969 it was shown that element equations could also 
be derived using a weighted residual procedure such as 
Galerkin’s Method or the least squares approach. This allows 
application to any BVP and therefore enlarged its use and 
application (Felippa et al., 2006).  
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When FEM started in the early seventies highly qualified and 
trained specialists were needed to use this method. Neither 
graphical preprocessing nor matured FEM-tools were 
available. Too, the processing speeds of the computers were 
low. From the viewpoint of today rather small problems 
required profound knowledge in mathematics, software 
development, and technical engineering. The effort needed for 
solving FEM problems was too high even to think about 
commercial application of FEM in industrial companies (Lee, 
2009). Increase of the processing speed of computers and 
development of first graphic oriented preprocessors opened the 
door of the FEM into industrial companies. However, the 
handling of the programs retained difficult and still required 
highly trained and educated personal. Thus, this method was 
restricted to only to larger which could afford their own 
calculation group (Christoph, 2013).  
 
Though CAD systems became convenient and widely spread 
tools in the same time, there was lack of integration between 
CAD- and FEM-systems. Data transfer was done via interfaces 
of very different quality. Not unusual, a complete scratch-up of 
the model was necessary prior calculation. The model had to 
be simplified in order to facilitate meshing and reduce 
computing time. Most often, weeks and months went by 
between the completion of the CAD model and the results of 
the calculation (Saad, 2011). Several attempts to integrate the 
designer into the calculations process were made. They failed 
because of great differences between the CAD and                      
FEM-systems and difficulties in handling of FEM systems. 
The acceptance of these non-integrated FEM tools was very 
low.  
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The situation improved with the appearance of first integrated 
systems. Difficult geometry and data transfer into
preprocessor or rebuilding of the model was no longer 
necessary. However, the handling of the FEM tools
complicated and required highly trained specialists (
2011). Actually, the situation has improved drastically. CAD 
system developers designed FEM menu structures especially 
tailored to be used by designers. The main goal was easy 
handling to solve standard problems (Saad, 2011
 
Fundamental Concept of FEM 

 
Any continuous quantity, such as temperature, pressure, or 
displacement, can be approximated by a discrete model 
composed of a set of piecewise continuous functions 
(polynominals) defined over a finite number of subdomains or 
elements.  The finite element analysis can be done for one, two 
and three-dimensional problems. But generally, the easier 
problems are those including one and two
those can be solved without the aid of a computer, because 
even if they give a lot of equations, if they are handled with 
care, an exact result can be achieved. But if the analysis 
requires three-dimensional tools, then it would be a lot more 
complicated, because it will involve a lot of equations that are 
very difficult to solve without having an error. That is why 
engineers have developed softwares that can perform these 
analyses by computer, making everything easier. These 
softwares can make analysis of one, two and three dimensional 
problems with a very good accuracy (Song, 2009
element method (FEM) rapidly grew as the most useful 
numerical analysis tool for engineers and applied 
mathematicians because of it natural benefits over prior 
approaches. The main advantages are that its
arbitrary shapes in any number of dimensions. The shape can 
be made of any number of materials. The material properties 
can be non‐homogeneous (depend on location) and/or 
anisotropic (depend on direction). The way that the shape is 
supported (also called fixtures or restraints)
general, as can the applied sources (forces, pressures, heat flux, 
etc.). The FEM provides a standard process for converting 
governing energy principles or governing differential equations 
into a system of matrix equations to be solved for an
approximate solution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. An area crudely meshed with linear and quadratic triangles
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Basic concept of Integral Formulations

The basic concept behind the FEM is to replace any complex 
shape with the union (or summation) of a 
simple shapes (like triangles) that are combined to correctly 
model the original part. The smaller simpler shapes are called 
finite elements because each one occupies a small but finite 
sub‐domain of the original part as explained earl
contrast to the infinitesimally small or differential elements 
used for centuries to derive differential equations. To give a 
very simple example of this dividing and summing process, 
consider calculating the area of the arbitrary shape shown in 
Figure 1 (left). If the user knew the equations of the bounding 
curves, in theory, could integrate them to obtain the enclosed 
area (Akin, 2009).  
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For linear problems such solutions can be very accurate and 
and Geers, 2007). Having obtained 

approximate solution, the FEM provides additional standard 
procedures for follow up calculations (post‐processing), such 
as determining the integral of the solution, or its derivatives at 
various points in the shape. The post‐processing also yields 
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related information. Today, a second post‐processing of the 
recovered derivatives can yield error estimates that show where 
the study needs improvement. Indeed, adaptive procedures 
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thermal analysis, or vibration analysis) it is often referred to as 
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other tools like motion (kinetics) analysis systems and 
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Basic concept of Integral Formulations 
 

The basic concept behind the FEM is to replace any complex 
shape with the union (or summation) of a large number of very 
simple shapes (like triangles) that are combined to correctly 
model the original part. The smaller simpler shapes are called 
finite elements because each one occupies a small but finite 
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contrast to the infinitesimally small or differential elements 
used for centuries to derive differential equations. To give a 
very simple example of this dividing and summing process, 
consider calculating the area of the arbitrary shape shown in 
Figure 1 (left). If the user knew the equations of the bounding 
curves, in theory, could integrate them to obtain the enclosed 
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On the Alternative, split the area into an enclosed set of 
triangles (cover the shape with a mesh) and sum the areas of 
the individual triangles as expressed by equation 1 below: 
 

� = ∑ ���
��� = ∑ ∫ ��

��
�
���   ……………….. 1 

 
Now, one has some choices for the type of triangles. The 
engineer could pick straight sided (linear) triangles, or 
quadratic triangles (with edges that are parabolas), or cubic 
triangles, etc. The area of a straight‐sided triangle is a simple 
algebraic expression. The area of a curved triangle is             
relatively easy to calculate by numerical integration, but is 
computationally more expensive to obtain than that for the 
linear triangle. The first two triangle mesh choices are shown 
in Figure 1 for a large element size. Clearly, the simple 
straight‐sided triangular mesh (on the left) approximates the 
area very closely, but at the same time introduces geometric 
errors along the boundary. The boundary geometric error in a 
linear triangle mesh results from replacing a boundary curve by 
a series of straight line segments. That geometric boundary 
error can be reduced to any desired level by increasing the 
number of linear triangles. But that decision increases the 
number of calculations and makes one to trade off geometric 
accuracy versus the total number of required area calculations 
and summations (Akin, 2009). Area is a scalar, so it makes 
sense to be able to simply sum its parts to determine the total 
value, as shown above. Other topics, like kinetic energy or 
strain energy, can be summed in the same fashion. Indeed, the 
very first applications of FEA to structures was based on 
minimizing the energy stored in a linear elastic material. The 
FEM always involves some type of governing integral 
statement. That integration is also converted to the sum of the 
integrals over each element in the mesh. Even if one starts with 
a governing differential equation, it gets converted to an 
equivalent integral formulation by one of the methods of 
weighted residuals (MWR). The two most common methods, 
for FEA, are the Galerkin Method and the Method of Least 
Squares Figure (Akin, 2009). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, the boundary shape error is indeed reduced, at the 
expense of more complicated area calculations, but it is not 
eliminated. Some geometric error remains because most 
engineering curves are circular arcs, splines, or nurbs 
(non‐uniform rational B‐splines) and thus are not matched by a 
parabola. The most common way to reduce mesh geometric 
error is to simply use smaller elements, as shown in Figure 2 
below. For instance, the default element choice in Solid Works 
Simulation is the quadratic element. Other systems offer                  
a wider range of edge polynomial degree (e.g. cubic), as well 
as other shapes like quadrilaterals or rectangles. In 
three‐dimensional solid applications some systems offer 
dozens of choices for the edge degree polynomial order, and 
shapes including hexahedral, wedges, and tetrahedral elements. 
Hexahedral elements are generally more accurate, but can be 
more challenging to mesh automatically. Tetrahedral elements 
can match hexahedral element performance by using more 
(smaller) elements, and tetrahedral elements are much easier to 
mesh automatically (Akin, 2009). An example of the small 
two‐dimensional geometric boundary error due to different 
curved shapes is seen in Figure 3 where a circular arc and a 
parabola pass through the same three points. (A new method, 
called geometric analysis, can essentially eliminate all 
geometric errors, but it introduces new approximations in other 
study stages, such as in the restraint conditions.) 
 

Stages of Analysis and Their Uncertainties 
 

The typical stages of a FEA study are classified into three main 
stages 
 

i. Build the model 
ii. Solve the model 
iii. Display the results 
 

However, these three main stages are further sub-divided in 
this paper for more clarity and better understanding in simple 
stepwise approach that can conveniently guide the user of the 
FEM in running analysis: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
 

Figure 2. Mesh refinement quickly reduces geometric boundary errors for linear (left) or quadratic elements 
 

    
 

Figure 3. Linear or parabolic elements never exactly match circular shapes 
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 Firstly, construct the part(s) in a solid modeler. It is 
surprisingly easy to accidentally build flawed models with 
tiny lines, tiny surfaces or tiny interior voids. The part will 
look fine, except with extreme zooms, but it may fail to 
mesh. Most systems have checking routines that can find 
and repair such problems before one move on to a FEA 
study. Sometimes a user may have to export a part, and 
then import it back with a new name because imported 
parts are usually subjected to more time consuming checks 
than “native” parts. When multiple parts form an assembly, 
always mesh and study the individual parts before studying 
the assembly. Try to plan ahead and introduce split lines 
into the part to aid in mating assemblies and to locate load 
regions and restraint (or fixture or support) regions. Of late, 
construction of a part is probably the most reliable stage of 
any study. 
 

 Defeature the solid part model for meshing. The solid part 
may contain features, like a raised logo, that are not 
necessary to manufacture the part, or required for an 
accurate analysis study. They can be omitted from the solid 
used in the analysis study. 
 

 Then, combine multiple parts into an assembly. Again, this 
is well automated and reliable from the geometric point of 
view and assemblies “look” as expected. However, 
geometric mating of part interfaces is very different for 
defining their physical (displacement, or temperature) 
mating. The physical mating choices are often unclear and 
the engineer may have to make a range of assumptions, 
study each, and determine the worst case result. Having to 
use physical contacts makes the linear problem require 
iterative solutions that take a long time to run and might fail 
to converge. 
 

 Select the element type. Some FEA systems have a huge 
number of available element types (with underlying 
theoretical restrictions). The Solid Works system for 
example, has only the fundamental types of elements. 
Namely, truss elements (bars), frame elements (beams), 
thin shells (or flat plates), thick shells, and solids. The 
system selects the element type (beginning in 2009) based 
on the shape of the part. The user is allowed to covert a 
non‐solid element region to a solid element region, and vice 
versa. Knowing which class of element will give a more 
accurate or faster solution requires training in finite element 
theory. At times a second element type study is used to help 
validate a study based on what is thought to be the best 
element type. 
 

 Mesh the part(s) or assembly. Remember that the mesh 
solid may not be the same as the part solid is an important 
guide. A general rule in FEA is that the computer never has 
enough speed or memory. Sooner or later the system will 
find a study that it cannot execute. Often at times, this 
means that one must utilize a crude mesh (or at least crude 
in some region) and/or invoke the use of symmetry or 
anti‐symmetry conditions. Local solution errors in a study 
are proportional to the product of the element size and the 
gradient of the secondary variables (i.e., gradient of stress 
or heat flux).  
 

 Assign a linear material to each part. Modern FEA systems 
have a material library containing the “linear” mechanical, 
thermal, and/or fluid properties of most standardized 
materials. They also allow the user to define custom 
properties. The values in such tables are often 
misinterpreted to be more accurate and reliable than they 
actually are. The reported values are accepted average 
values taken from many tests. Rarely are there any data 
about the distribution of test results, or what standard 
deviation was associated with the tests. Most tests yield 
results that follow a “bell shaped” curve distribution, or a 
similar skewed curve. Material data are usually more 
reliable than the loading values (considered next), but less 
accurate that the model or mesh geometries. 
 

 Select regions of the part(s) to be loaded as well as 
assigning load levels and load types to each region. In 
mathematical terminology, load or flux conditions on a 
boundary region are called Neumann boundary conditions, 
or non‐essential conditions. The geometric regions can be 
points (in theory), lines, surfaces, or volumes. If they are 
not existing features of the part, apply split lines to the part 
to create them before activating the mesh generator. Point 
forces, or heat sources, are common in undergraduate 
studies, but in a FEA they cause false infinite stresses, or 
heat flux.  

 
Saint Venant’s Principle states that two different, but statically 
equivalent force systems acting on a small portion of the 
surface of a body produce the same stress distributions at 
distantness large in comparison with the linear dimensions of 
the portion where the forces act as shown in the Figure 4 
below. Assign a contribution to the total factor of safety to 
allow for variations in the uncertainty of the load value or 
actual spatial distribution of applied loads. Loading data are 
usually less accurate than the material data, but much more 
accurate that the restraint or supporting conditions considered 
next. 
 

 
 

Figure 4.  St. Venant's principle: local effects quickly die out 
 
 Determine (or more likely assume) how the model 
interacts with the surroundings not included in the design 
model. These are the restraint (support, or fixture) regions. In 
mathematical terminology, these are called the essential 
boundary conditions, or Dirichlet boundary conditions. It is 
almost impossible to model everything interacting with a part. 
For many decades engineers have developed simplified 
concepts to approximate surroundings adjacent to a model to 
simplify hand calculations. They include roller supports, 
smooth pins, cantilever (encast, or fixed) supports, straight 
cable attachments, etc.  
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Those concepts are often carried over to FEA approaches 
and can over simplify the true support nature and lead to 
very large errors in the results. The engineer needs to assign 
a contribution to the total factor of safety to allow for 
variations in the uncertainty of how or where the actual 
support conditions occur. 

 
 Solve the linear system of equations, or the eigen value 

problem. With today’s numerical algorithms the solution of 
the algebraic system or eigen‐system is usually quite 
reliable. It is possible to cause ill conditioned systems 
(large condition number) with meshes having large 
elements adjacent to small ones, but that is unlikely to 
happen with automatic mesh generators. 
 

 Check the results. Are the reactions at the supports equal 
and opposite to the supposed sources you thought that you 
applied? Are the results consistent with the assumed linear 
behavior? The engineering definition of a problem with 
large displacements is one where the maximum 
displacement is more than half the smallest geometric 
thickness of the part. The internal definition is a 
displacement field that significantly changes the volume of 
an element. That implies the element geometric shape 
noticeably changed from the starting shape, and that the 
shape needs to be updated in a series of much smaller shape 
changes. Are the displacements big enough to require 
re‐solution with large displacement iterations turned on?  

 
 Post‐process the solution for secondary variables. For 

structural studies the engineer should generally wish to 
document the deflections and stresses. For thermal studies, 
display the temperatures and heat flux vectors. With natural 
frequency models you show (or animate) a few mode 
shapes. Control the number of contours employed, as well 
as their maximum and minimum ranges. The latter is 
important if the desire is to compare two designs on a 
single page. Limit the number of digits shown on the 
contour scale to be consistent with the material modulus (or 
conductivity, etc.). Contour plots often do not reproduce 
well in a report, but graphs generally do, it is imperative to 
learn to include graphs in documentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Determine (or more likely assume) what failure criterion 
applies to the study. This stage involves assumptions about 
how a structural material might fail. There are a number of 
theories. Most are based on stress values or distortional 
energy levels, but a few depend on strain values. If one has 
been accepted for the selected material then use that one 
(with a contribution to the overall factor of safety). 
Otherwise, you should evaluate more than one theory and 
see which the worst case is. Also keep in mind that loading 
or support uncertainties can lead to a range of stress levels, 
and variations in material properties affect the strength and 
unexpected failures can occur if those types of distributions 
happen to intersect, as sketched in Figure 5. 

 

 Optionally, post‐process the secondary variables to measure 
the theoretical error in the study, and adaptively correct the 
solution. This converges to an accurate solution to the 
problem input, but perhaps not to the problem to be solved. 
Accurate garbage is still garbage. 

 

 

Figure 5. Distributions of loads/restraints and material strengths 
can cause failure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Relative uncertainties of major modeling stages 
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 Document, report, and file the study. The part shape, mesh, 
and results should be reported in image form. Assumptions 
on which the study was based should be clearly stated, and 
hopefully confirmed. The documentation should contain an 
independent validation calculation, or two, from an 
analytical approximation or a FEA based on a totally 
different element type. Try to address the relative 
uncertainties of the main analysis stages, as summarized in 
Figure 6. 

 
 
 
 
 
 
 
 
 
 
 

Finite element method and degree of freedom 
 

The ubiquitous term “degrees of freedom,” often abbreviated 
to freedom or DOF, as well as “stiffness matrix” and “force 
vector,” originated in structural mechanics, the application for 
which FEM was invented. These names have carried over to 
non-structural applications as discussed below.  
 
Classical analytical mechanics is that invented by Euler and 
Lagrange in the XVIII century and further developed by 
Hamilton, Jacobi and Poincar´e as a systematic formulation of 
Newtonian mechanics. Its objects of attention are models of 
mechanical systems ranging from material particles composed 
of sufficiently large number of molecules, through airplanes, to 
the Solar System.  The spatial configuration of any such 
system is described by its degrees of freedom or DOF. These 
are also called generalized coordinates. The terms state 
variables and primary variables are also used, particularly in 
mathematically oriented treatments (ASEN 5007, 2014). If the 
number of degrees freedom is finite, the model is called 
discrete and continuous otherwise. Because FEM is a 
discretization method, the number of DOF of a FEM model is 
necessarily finite. They are collected in a column vector called 
u. This vector is called the DOF vector or state vector. The 
term nodal displacement vector for u is reserved to mechanical 
applications (ASEN 5007, 2014). In analytical mechanics, each 
degree of freedom has a corresponding “conjugate” or “dual” 
term, which represents a generalized force (Abramowitz and 
Stegun, 1993). In non-mechanical applications, there is a 
similar set of conjugate quantities, which for want of a better 
term are also called forces or forcing terms. They are the 
agents of change. These forces are collected in a column vector 
called f. The inner product	��� has the meaning of external 
energy or work (ASEN 5007, 2014). The relation between u 
and f is assumed to be of linear and homogeneous. The last 
assumption means that if u vanishes so does f. The relation is 
then expressed by the master stiffness equations: 
 
�� = �   ……………………………… 2 
 
K is universally called the stiffness matrix even in non-
structural applications because no consensus has emerged on 
different names.  

The physical significance of the vectors u and f varies 
according to the application being modeled, as illustrated             
in Table 1 below. If the relation between forces and 
displacements is linear but not homogeneous, equation 2 
above, generalizes to 
 

Ku = �� + ��  ………………………………………. 3 
 

Where ��	is the initial node force vector for effects such as 
temperaturechanges, and ��is the vector of mechanical forces.  
 
 
 
 
 
 
 
 
 
 
 

Idealization 
 
Idealization passes from the physical system to a mathematical 
model. This is the most important step in engineering practice, 
because it cannot be “canned.” It must be done by a human. 
The word “model” has the traditional meaning of a scaled copy 
or representation of an object. And that is precisely how most 
dictionaries define it. The term is used here in a more modern 
sense, which has become increasingly common since the 
advent of computers: 
 
A model is a symbolic device built to simulate and predict 
aspects of behavior of a system.                              ……… 4 

 
Note the distinction made between behavior and aspects of 
behavior. To predict everything, in all physical scales, you 
must deal with the actual system. A model aspects of interest to 
them (Hughes, 2000) the qualifier symbolic means that a 
model represents a system in terms of the symbols and 
language of another discipline. For example, engineering 
systems may be (and are) modeled with the symbols of 
mathematics and/or computer sciences (Felippa, 2004). 
 
Mathematical Models 
 
Mathematical modeling, or idealization, is a process by which 
an engineer or scientist passes from the actual physical system 
under study, to a mathematical model of the system. The 
process is called idealization because the mathematical model 
is necessarily an abstraction of the physical reality. To give an 
example of the choices that an engineer may face, suppose that 
the structure is a flat plate structure subjected to transverse 
loading. Here is a non-exhaustive list of four possible 
mathematical models: 
 
1. A very thin plate model based on Von Karman’s coupled 

membrane-bending theory. 
2. A thin plate model, such as the classical Kirchhoff’s plate 

theory. 
3. A moderately thick plate model, for example that of 

Mindlin-Reissner plate theory. 
4. A very thick plate model based on three-dimensional 

elasticity. 

Table 1. Significance of u and f in Miscellaneous FEM Applications 
 

Application Problem State (DOF) vector u represents Conjugate vector f represents 

Structures and solid mechanics 
Heat conduction 
Acoustic fluid 
Potential flows 
General flows 
Electrostatics 
Magnetostatics 

Displacement 
Temperature 
Displacement potential 
Pressure 
Velocity 
Electric potential 
Magnetic potential 

Mechanical force 
Heat flux 
Particle velocity 
Particle velocity 
Fluxes 
Charge density 
Magnetic intensity 
 

 

International Journal of Innovation Sciences and Research                                                                                                                                  290                                



The person responsible for this kind of decision is supposed to 
be familiar with the advantages, disadvantages, and range of 
applicability of each model. Furthermore the decision may be 
different in static analysis than in dynamics. 
 
Discretization 
 
Mathematical modeling is a simplifying step. But models of 
physical systems are not necessarily simple to solve. They 
often involve coupled partial differential equations in space 
and time subject to boundary and/or interface conditions. Such 
models have an infinite number of degrees of freedom. 
 
Numerical or Analytical 
 
At this point one faces the choice of going for analytical or 
numerical solutions. Analytical solutions, also called “closed 
form solutions,” are more intellectually satisfying, particularly 
if they apply to a wide class of problems, so that particular 
instances may be obtained by substituting the values of free 
parameters. Unfortunately they tend to be restricted to regular 
geometries and simple boundary conditions. Moreover some 
closed-form solutions, expressed for example as inverses of 
integral trans forms, may have to be anyway numerically 
evaluated to be useful (ASEN 5007, 2014). Most problems 
faced by the engineer either do not yield to analytical treatment 
or doing so would require a disproportionate amount of effort 
(Õnate et al., 2004) The practical way out is numerical 
simulation. Here is where finite element methods enter the 
scene. To make numerical simulations practical it is necessary 
to reduce the number of degrees of freedom to a finite number. 
The reduction is called discretization. The product of the 
discretization process is the discrete model. Discretization can 
proceed in space dimensions as well as in the time dimension 
(ASEN 5007, 2014). 
 
Element Attributes 
 
One can take finite elements of any kind one at a time. Their 
local properties can be developed by considering them in 
isolation, as individual entities. This is the key to the modular 
programming of element libraries. In the Direct Stiffness 
Method, elements are isolated by the disconnection and 
localization steps. The procedure involves the separation of 
elements from their neighbors by disconnecting the nodes, 
followed by referral of the element to a convenient local 
coordinate system (Idelsohn et al., 2009). After that one can 
consider generic elements: a bar element, a beam element, and 
so on. From the standpoint of the computer implementation, it 
means that one can write one subroutine or module that 
constructs, by suitable parametrization, all elements of one 
type, instead of writing a new one for each element instance 
(ASEN 5007, 2014). 
 
Element Dimensionality 
 
Elements can have intrinsic dimensionality of one, two or three 
space dimensions. There are also special elements with zero 
dimensionality, such as lumped springs or point masses. The 
intrinsic dimensionality can be expanded as necessary by use 
of kinematic transformations. For example a 1D element such 
as a bar, spar or beam may be used to build a model in 2D or 
3D space. 

 
Element Nodes 
 
Each element possesses a set of distinguishing points called 
nodal points or nodes for short. Nodes serve a dual purpose: 
definition of element geometry, and home for degrees of 
freedom. When a distinction is necessary we call the former 
geometric nodes and the latter connection nodes. For most 
elements studied here, geometric and connector nodes 
coalesce. Nodes are usually located at the corners or end points 
of elements. In the so-called refined or higher-order elements 
nodes are also placed on sides or faces, as well as possibly the 
interior of the element (Olovsson et al., 2005). 
 
Element Geometry 
 
The geometry of the element is defined by the placement of the 
geometric nodal points. Most elements used in practice have 
fairly simple geometries. In one-dimension, elements are 
usually straight lines or curved segments. In two dimensions 
they are of triangular or quadrilateral shape. In three 
dimensions the most common shapes are tetrahedral, 
pentahedral (also called wedges or prisms), and hexahedra 
(also called cuboids or “bricks”).  
 
Element Degrees of Freedom 
 
The element degrees of freedom (DOF) specify the state of the 
element. They also function as“ handles” through which 
adjacent elements are connected. DOFs are defined as the 
values (and possibly derivatives) of a primary field variable at 
connector node points. For mechanical elements, the primary 
variable is the displacement field and the DOF for many (but 
not all) elements are the displacement components at the 
nodes. 
 
Conclusion 

 
The major concepts of FEM/FEA have been reviewed along 
with their history and their major applications. The study is not 
an all-encompassing textbook so to say, but it comfortably 
serves as an essential tool towards guiding the hands and mind 
of a beginner in the use of the FEM in engineering analysis, 
thus, doubling as tit bit for building the confidence of a 
beginner in the use of the FEM and aiding the beginners’ 
confidence level to that of an everyday user with adequate 
practice. 
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